These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10549170)

  • 1. Postulated effects on water structure of some salts and protein denaturants as inferred from measurements of viscosity B coefficients: example of HbS polymerization.
    Banerjee R; Frilley B; Guissani A
    Indian J Biochem Biophys; 1999 Apr; 36(2):107-17. PubMed ID: 10549170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of protein denaturants and stabilizers on water structure.
    Batchelor JD; Olteanu A; Tripathy A; Pielak GJ
    J Am Chem Soc; 2004 Feb; 126(7):1958-61. PubMed ID: 14971928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The entropically favored osmotic "compression" of sickle cell hemoglobin gels.
    Chik JK; Parsegian VA
    Biopolymers; 2001 Aug; 59(2):120-4. PubMed ID: 11373725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of the osmotic behavior of sickle cell hemoglobin solutions: different interactions among monomers and polymers.
    Han J; Herzfeld J
    Biopolymers; 1998 Apr; 45(4):299-306. PubMed ID: 9491759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of T-R conformational change on sickle-cell hemoglobin interactions and aggregation.
    Vaiana SM; Rotter MA; Emanuele A; Ferrone FA; Palma-Vittorelli MB
    Proteins; 2005 Feb; 58(2):426-38. PubMed ID: 15573374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.
    O'Brien EP; Dima RI; Brooks B; Thirumalai D
    J Am Chem Soc; 2007 Jun; 129(23):7346-53. PubMed ID: 17503819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of water vapor, hydration, and viscosity of carboxymethylhydroxypropyl guar, diutan, and xanthan gums, and their molecular association with and without salts (NaCl, CaCl2, HCOOK, CH3COONa, (NH4)2SO4 and MgSO4) in aqueous solution.
    Banerjee P; Mukherjee I; Bhattacharya S; Datta S; Moulik SP; Sarkar D
    Langmuir; 2009 Oct; 25(19):11647-56. PubMed ID: 19715284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo polymerization of sickle-cell hemoglobin: a theoretical study.
    Makhijani VB; Cokelet GR
    Blood Cells; 1994; 20(1):169-83; discussion 184-90. PubMed ID: 7994059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of the hofmeister effect.
    Gurau MC; Lim SM; Castellana ET; Albertorio F; Kataoka S; Cremer PS
    J Am Chem Soc; 2004 Sep; 126(34):10522-3. PubMed ID: 15327293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of macromolecules in protective and denaturing osmolytes: properties of mixed solvent systems and their effects on water and protein structure and dynamics.
    Beck DA; Bennion BJ; Alonso DO; Daggett V
    Methods Enzymol; 2007; 428():373-96. PubMed ID: 17875430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface.
    Pegram LM; Record MT
    J Phys Chem B; 2007 May; 111(19):5411-7. PubMed ID: 17432897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of aqueous solutions: insights into multiple facets of chemistry and biochemistry from freezing-point depressions.
    Zavitsas AA
    Chemistry; 2010 May; 16(20):5942-60. PubMed ID: 20397243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation and strong co-solute effects on protein kinetic stability.
    Broering JM; Bommarius AS
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1602-5. PubMed ID: 18031274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crowding and the polymerization of sickle hemoglobin.
    Ferrone FA; Rotter MA
    J Mol Recognit; 2004; 17(5):497-504. PubMed ID: 15362110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sickle-cell haemoglobin polymerization: is it the primary pathogenic event of sickle-cell anaemia?
    Vekilov PG
    Br J Haematol; 2007 Oct; 139(2):173-84. PubMed ID: 17897293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerization of deoxy-sickle cell hemoglobin in high-phosphate buffer.
    Wang Z; Kishchenko G; Chen Y; Josephs R
    J Struct Biol; 2000 Sep; 131(3):197-209. PubMed ID: 11052892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compatible solutes: Thermodynamic properties and biological impact of ectoines and prolines.
    Held C; Neuhaus T; Sadowski G
    Biophys Chem; 2010 Nov; 152(1-3):28-39. PubMed ID: 20719425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexibility and nucleation in sickle hemoglobin.
    Ivanova M; Jasuja R; Krasnosselskaia L; Josephs R; Wang Z; Ding M; Horiuchi K; Adachi K; Ferrone FA
    J Mol Biol; 2001 Dec; 314(4):851-61. PubMed ID: 11734002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme stability of helices formed by water-soluble poly-N-substituted glycines (polypeptoids) with alpha-chiral side chains.
    Sanborn TJ; Wu CW; Zuckermann RN; Barron AE
    Biopolymers; 2002 Jan; 63(1):12-20. PubMed ID: 11754344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of water in aqueous systems; a frequently neglected property.
    Blandamer MJ; Engberts JB; Gleeson PT; Reis JC
    Chem Soc Rev; 2005 May; 34(5):440-58. PubMed ID: 15852156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.