These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10549511)

  • 21. Detection of T4 polynucleotide kinase activity based on cationic conjugated polymer-mediated fluorescence resonance energy transfer.
    Lian S; Liu C; Zhang X; Wang H; Li Z
    Biosens Bioelectron; 2015 Apr; 66():316-20. PubMed ID: 25437369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new procedure for the simultaneous large-scale purification of bacteriophage-T4-induced polynucleotide kinase, DNA ligase, RNA ligase and DNA polymerase.
    Dolganov GM; Chestukhin AV; Shemyakin MF
    Eur J Biochem; 1981 Feb; 114(2):247-54. PubMed ID: 6260493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme.
    Wang LK; Lima CD; Shuman S
    EMBO J; 2002 Jul; 21(14):3873-80. PubMed ID: 12110598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. T4 DNA ligase distinguishes between Rp- and Sp- configurations at phosphorus chiral atom on phosphoramide DNA analogs.
    Shibanova EV; Korobko VG; Dobrynin VN
    Nucleic Acids Symp Ser; 1991; (24):279. PubMed ID: 1841338
    [No Abstract]   [Full Text] [Related]  

  • 25. A new approach to the synthesis of the 5'-end substituted oligonucleotides using T4 polynucleotide kinase and gamma-amides of ATP bearing photoreactive groups.
    Petrousseva IO; Safronov IV; Komarova NI; Kamynina TP; Lavrik OI; Khodyreva SN
    Dokl Biochem Biophys; 2003; 389():114-7. PubMed ID: 12856418
    [No Abstract]   [Full Text] [Related]  

  • 26. Using macromolecular crowding agents to identify weak interactions within DNA replication complexes.
    Reddy MK; Weitzel SE; Daube SS; Jarvis TC; von Hippel PH
    Methods Enzymol; 1995; 262():466-76. PubMed ID: 8594371
    [No Abstract]   [Full Text] [Related]  

  • 27. Polynucleotide kinase: a versatile molecule makes a clean break.
    Caldecott KW
    Structure; 2002 Sep; 10(9):1151-2. PubMed ID: 12220484
    [No Abstract]   [Full Text] [Related]  

  • 28. Phosphorylation-induced hybridization chain reaction on beads: an ultrasensitive flow cytometric assay for the detection of T4 polynucleotide kinase activity.
    Zhang Y; Liu C; Sun S; Tang Y; Li Z
    Chem Commun (Camb); 2015 Apr; 51(27):5832-5. PubMed ID: 25683206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Dual-Enzyme-Assisted Three-Dimensional DNA Walking Machine Using T4 Polynucleotide Kinase as Activators and Application in Polynucleotide Kinase Assays.
    Feng C; Wang Z; Chen T; Chen X; Mao D; Zhao J; Li G
    Anal Chem; 2018 Feb; 90(4):2810-2815. PubMed ID: 29377674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of a tRNA repair enzyme and molecular biology workhorse: T4 polynucleotide kinase.
    Galburt EA; Pelletier J; Wilson G; Stoddard BL
    Structure; 2002 Sep; 10(9):1249-60. PubMed ID: 12220496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prokaryotic DNA ligases unwind superhelical DNA.
    Ivanchenko M; van Holde K; Zlatanova J
    Biochem Biophys Res Commun; 1996 Sep; 226(2):498-505. PubMed ID: 8806663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains.
    Ho CK; Shuman S
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12709-14. PubMed ID: 12228725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time investigation of nucleic acids phosphorylation process using molecular beacons.
    Tang Z; Wang K; Tan W; Ma C; Li J; Liu L; Guo Q; Meng X
    Nucleic Acids Res; 2005 Jun; 33(11):e97. PubMed ID: 15961728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fluorometric method for determination of the activity of T4 polynucleotide kinase by using a DNA-templated silver nanocluster probe.
    Li J; Ma J; Zhang Y; Zhang Z; He G
    Mikrochim Acta; 2019 Jan; 186(1):48. PubMed ID: 30610460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-step highly sensitive florescence detection of T4 polynucleotide kinase activity and biological small molecules by ligation-nicking coupled reaction-mediated signal amplification.
    Chen F; Zhao Y; Qi L; Fan C
    Biosens Bioelectron; 2013 Sep; 47():218-24. PubMed ID: 23584226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of enzymatic recognition of DNA-duplexes containing NO-induced lesions by DNA-relevant enzymes.
    Doi A; Pack SP; Nonogawa M; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):451-2. PubMed ID: 18029781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recognition of DNA substrates by T4 bacteriophage polynucleotide kinase.
    Eastberg JH; Pelletier J; Stoddard BL
    Nucleic Acids Res; 2004; 32(2):653-60. PubMed ID: 14754987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput analysis of nucleic acid modification reactions using ion-pair reverse-phase high-performance liquid chromatography.
    Dickman MJ; Matin MM; Hornby DP
    Anal Biochem; 2002 Feb; 301(2):290-7. PubMed ID: 11814299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomolecular response of oxanine in DNA strands to T4 polynucleotide kinase, T4 DNA ligase, and restriction enzymes.
    Pack SP; Doi A; Choi YS; Kodaki T; Makino K
    Biochem Biophys Res Commun; 2010 Jan; 391(1):118-22. PubMed ID: 19900415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly sensitive fluorescence assay of T4 polynucleotide kinase activity and inhibition via enzyme-assisted signal amplification.
    Tao M; Zhang J; Jin Y; Li B
    Anal Biochem; 2014 Nov; 464():63-9. PubMed ID: 25058928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.