These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. cDNA library construction using in vitro transcriptional amplification. Lin SL; Ji H Methods Mol Biol; 2003; 221():93-101. PubMed ID: 12703736 [No Abstract] [Full Text] [Related]
5. Modified nucleic acids for in vitro selection. Ito Y Nucleic Acids Symp Ser; 1997; (37):259-60. PubMed ID: 9586098 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase. Liu C; Martin CT J Mol Biol; 2001 May; 308(3):465-75. PubMed ID: 11327781 [TBL] [Abstract][Full Text] [Related]
8. The intercalating beta-hairpin of T7 RNA polymerase plays a role in promoter DNA melting and in stabilizing the melted DNA for efficient RNA synthesis. Stano NM; Patel SS J Mol Biol; 2002 Feb; 315(5):1009-25. PubMed ID: 11827472 [TBL] [Abstract][Full Text] [Related]
9. In vitro selected oligonucleotides as receptors in binding assays. Ito Y; Kawazoe N; Imanishi Y Methods; 2000 Sep; 22(1):107-14. PubMed ID: 11020323 [TBL] [Abstract][Full Text] [Related]
10. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes. Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of the in vitro transcription by T7 RNA polymerase of short DNA templates containing oxidative thymine lesions. Guerniou V; Gasparutto D; Douki T; Cadet J; Sauvaigo S C R Biol; 2005 Sep; 328(9):794-801. PubMed ID: 16168360 [TBL] [Abstract][Full Text] [Related]
12. Site-specific incorporation of fluorescent probes into RNA by specific transcription using unnatural base pairs. Kimoto M; Kawai R; Mitsui T; Harada Y; Sato A; Yokoyama S; Hirao I Nucleic Acids Symp Ser (Oxf); 2005; (49):287-8. PubMed ID: 17150746 [TBL] [Abstract][Full Text] [Related]
14. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme. Schulz A; Langowski J; Rippe K J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence generation from tandem repeats of a malachite green RNA aptamer using rolling circle transcription. Furukawa K; Abe H; Abe N; Harada M; Tsuneda S; Ito Y Bioorg Med Chem Lett; 2008 Aug; 18(16):4562-5. PubMed ID: 18667307 [TBL] [Abstract][Full Text] [Related]
16. Repression of transcription initiation at 434 P(R) by 434 repressor: effects on transition of a closed to an open promoter complex. Xu J; Koudelka GB J Mol Biol; 2001 Jun; 309(3):573-87. PubMed ID: 11397081 [TBL] [Abstract][Full Text] [Related]
17. Charting a course through RNA polymerase. Bell SD; Jackson SP Nat Struct Biol; 2000 Sep; 7(9):703-5. PubMed ID: 10966630 [No Abstract] [Full Text] [Related]
18. Comparative analysis of the ability of the polymerase complexes of influenza viruses type A, B and C to assemble into functional RNPs that allow expression and replication of heterotypic model RNA templates in vivo. Crescenzo-Chaigne B; Naffakh N; van der Werf S Virology; 1999 Dec; 265(2):342-53. PubMed ID: 10600605 [TBL] [Abstract][Full Text] [Related]
19. Evidence for DNA bending at the T7 RNA polymerase promoter. Ujvári A; Martin CT J Mol Biol; 2000 Feb; 295(5):1173-84. PubMed ID: 10653695 [TBL] [Abstract][Full Text] [Related]
20. Overextended RNA:DNA hybrid as a negative regulator of RNA polymerase II processivity. Kireeva ML; Komissarova N; Kashlev M J Mol Biol; 2000 Jun; 299(2):325-35. PubMed ID: 10860741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]