These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 10549936)
1. Utility of digital camera-derived intraoperative images in the planning of epilepsy surgery for children. Rutka JT; Otsubo H; Kitano S; Sakamoto H; Shirasawa A; Ochi A; Snead OC Neurosurgery; 1999 Nov; 45(5):1186-91. PubMed ID: 10549936 [TBL] [Abstract][Full Text] [Related]
2. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
3. Digital photography and 3D MRI-based multimodal imaging for individualized planning of resective neocortical epilepsy surgery. Wellmer J; von Oertzen J; Schaller C; Urbach H; König R; Widman G; Van Roost D; Elger CE Epilepsia; 2002 Dec; 43(12):1543-50. PubMed ID: 12460257 [TBL] [Abstract][Full Text] [Related]
4. Multiple subpial transections in the treatment of pediatric epilepsy. Blount JP; Langburt W; Otsubo H; Chitoku S; Ochi A; Weiss S; Snead OC; Rutka JT J Neurosurg; 2004 Feb; 100(2 Suppl Pediatrics):118-24. PubMed ID: 14758939 [TBL] [Abstract][Full Text] [Related]
5. Use of subdural grids and strip electrodes to identify a seizure focus in children. Adelson PD; Black PM; Madsen JR; Kramer U; Rockoff MA; Riviello JJ; Helmers SL; Mikati M; Holmes GL Pediatr Neurosurg; 1995; 22(4):174-80. PubMed ID: 7619717 [TBL] [Abstract][Full Text] [Related]
6. Complications of invasive subdural grid monitoring in children with epilepsy. Onal C; Otsubo H; Araki T; Chitoku S; Ochi A; Weiss S; Elliott I; Snead OC; Rutka JT; Logan W J Neurosurg; 2003 May; 98(5):1017-26. PubMed ID: 12744361 [TBL] [Abstract][Full Text] [Related]
7. Use of frameless stereotaxy with location of electroencephalographic electrodes on three-dimensional computed tomographic images in epilepsy surgery. Otsubo H; Hwang PA; Hunjan A; Armstrong D; Holowka S; Drake JM; Hoffman HJ J Clin Neurophysiol; 1995 Jul; 12(4):363-71. PubMed ID: 7560023 [TBL] [Abstract][Full Text] [Related]
8. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes. Pieters TA; Conner CR; Tandon N J Neurosurg; 2013 May; 118(5):1086-97. PubMed ID: 23495883 [TBL] [Abstract][Full Text] [Related]
9. Subdural monitoring in the evaluation of children for epilepsy surgery. Jayakar P; Duchowny M; Resnick TJ J Child Neurol; 1994 Oct; 9 Suppl 2():61-6. PubMed ID: 7806787 [TBL] [Abstract][Full Text] [Related]
11. Intraoperative computed tomography for intracranial electrode implantation surgery in medically refractory epilepsy. Lee DJ; Zwienenberg-Lee M; Seyal M; Shahlaie K J Neurosurg; 2015 Mar; 122(3):526-31. PubMed ID: 25361483 [TBL] [Abstract][Full Text] [Related]
12. Seizure outcome in children with hemispheric tumors and associated intractable epilepsy: the role of tumor removal combined with seizure foci resection. Berger MS; Ghatan S; Geyer JR; Keles GE; Ojemann GA Pediatr Neurosurg; 1991-1992; 17(4):185-91. PubMed ID: 1822132 [TBL] [Abstract][Full Text] [Related]
13. A new cortical electrode for neuronavigation-guided intraoperative neurophysiological monitoring: technical note. Suess O; Kombos T; Hoell T; Baur S; Pietilae T; Brock M Acta Neurochir (Wien); 2000; 142(3):329-32. PubMed ID: 10819264 [TBL] [Abstract][Full Text] [Related]
14. Use of positron emission tomography for presurgical localization of eloquent brain areas in children with seizures. Duncan JD; Moss SD; Bandy DJ; Manwaring K; Kaplan AM; Reiman EM; Chen K; Lawson MA; Wodrich DL Pediatr Neurosurg; 1997 Mar; 26(3):144-56. PubMed ID: 9419031 [TBL] [Abstract][Full Text] [Related]
15. Medically resistant pediatric insular-opercular/perisylvian epilepsy. Part 2: outcome following resective surgery. Weil AG; Le NM; Jayakar P; Resnick T; Miller I; Fallah A; Duchowny M; Bhatia S J Neurosurg Pediatr; 2016 Nov; 18(5):523-535. PubMed ID: 27472665 [TBL] [Abstract][Full Text] [Related]
16. Magnetoencephalography-guided epilepsy surgery for children with intractable focal epilepsy: SickKids experience. Ochi A; Otsubo H Int J Psychophysiol; 2008 May; 68(2):104-10. PubMed ID: 18313780 [TBL] [Abstract][Full Text] [Related]
17. Functional image-guided neurosurgical simulation system using computerized three-dimensional graphics and dipole tracing. Hayashi N; Endo S; Kurimoto M; Nishijo H; Ono T; Takaku A Neurosurgery; 1995 Oct; 37(4):694-703. PubMed ID: 8559298 [TBL] [Abstract][Full Text] [Related]
18. Coregistration of digital photography of the human cortex and cranial magnetic resonance imaging for visualization of subdural electrodes in epilepsy surgery. Mahvash M; König R; Wellmer J; Urbach H; Meyer B; Schaller K Neurosurgery; 2007 Nov; 61(5 Suppl 2):340-4; discussion 344-5. PubMed ID: 18091249 [TBL] [Abstract][Full Text] [Related]
19. Results of cortical resection for intractable epilepsy using intra-operative corticography without chronic intracranial recording. Davies KG; Weeks RD Br J Neurosurg; 1995; 9(1):7-12. PubMed ID: 7786430 [TBL] [Abstract][Full Text] [Related]
20. Chronic invasive monitoring for identifying seizure foci in children. Adelson PD; O'Rourke DK; Albright AL Neurosurg Clin N Am; 1995 Jul; 6(3):491-504. PubMed ID: 7670323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]