These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10550528)

  • 1. Reduction of high-energy shock-wave-induced renal tubular injury by selenium.
    Strohmaier WL; Lahme S; Weidenbach PM; Bichler KH
    Urol Res; 1999 Oct; 27(5):382-5. PubMed ID: 10550528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damaging effects of high energy shock waves on cultured Madin Darby canine kidney (MDCK) cells.
    Strohmaier WL; Bichler KH; Deetjen P; Kleinknecht S; Pedro M; Wilbert DM
    Urol Res; 1990; 18(4):255-8. PubMed ID: 2219588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Citrate and vitamin E blunt the shock wave-induced free radical surge in an in vitro cell culture model.
    Delvecchio FC; Brizuela RM; Khan SR; Byer K; Li Z; Zhong P; Preminger GM
    Urol Res; 2005 Dec; 33(6):448-52. PubMed ID: 16317535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium reduces high energy shock wave-induced renal injury in rats.
    Strohmaier WL; Billes IC; Abelius A; Lahme S; Bichler KH
    Urol Res; 2002 Mar; 30(1):31-4. PubMed ID: 11942323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nifedipine, verapamil and diltiazem block shock-wave-induced rises in cytosolic calcium in MDCK cells.
    Jan CR; Chen WC; Wu SN; Tseng CJ
    Chin J Physiol; 1998 Dec; 41(4):181-8. PubMed ID: 10099864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of high energy shock wave exposure on renal function during extracorporeal shock wave lithotripsy for kidney stones.
    Kishimoto T; Senju M; Sugimoto T; Yamamoto K; Sakamoto W; Iimori M; Kanasawa T; Wada S; Maekawa M
    Eur Urol; 1990; 18(4):290-8. PubMed ID: 1705228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel antioxidant agent, astragalosides, prevents shock wave-induced renal oxidative injury in rabbits.
    Li X; He D; Zhang L; Cheng X; Sheng B; Luo Y
    Urol Res; 2006 Aug; 34(4):277-82. PubMed ID: 16783584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-energy shock waves alter cytosolic calcium mobilization in single MDCK cells.
    Jan CR; Huang JK; Tseng CJ
    Nephron; 1998; 78(2):187-94. PubMed ID: 9496736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allopurinol blocks shock-wave-induced rises in cytosolic calcium levels in MDCK cells.
    Jan CR; Chen WC; Lee YH; Huang JK; Ou HC; Tseng CJ
    Urol Res; 1997; 25(6):427-32. PubMed ID: 9443653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel antioxidant agent caffeic acid phenethyl ester prevents shock wave-induced renal tubular oxidative stress.
    Ozguner F; Armagan A; Koyu A; Caliskan S; Koylu H
    Urol Res; 2005 Jun; 33(3):239-43. PubMed ID: 15877224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of persisting parenchymal damage after extracorporeal shock wave lithotripsy as judged by excretion of renal tubular enzymes.
    Karlin GS; Schulsinger D; Urivetsky M; Smith AD
    J Urol; 1990 Jul; 144(1):13-4. PubMed ID: 1972764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of shock wave reapplication on urinary N-acetyl-beta-glucosaminidase in canine kidney.
    Fortes MA; Andriolo A; Ortiz V; Srougi M
    Int Braz J Urol; 2004; 30(2):148-54. PubMed ID: 15703100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leucine aminopeptidase enzymuria: quantification of renal tubular damage following extracorporeal shock wave lithotripsy.
    Sarica K; Süzer O; Yaman O; Küpeli B; Baltaci S; Bilaloğlu E; Tasman S
    Int Urol Nephrol; 1996; 28(5):621-6. PubMed ID: 9061419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Urinary excretion of N-acetyl-glucosaminidase after extracorporeal shockwave lithotripsy: a marker of renal tubule injury].
    Trinchieri A; Zanetti G; Tombolini P; Ruoppolo M; Montanari E; Mazza L; Tura M
    Arch Ital Urol Nefrol Androl; 1989 Dec; 61(4):407-11. PubMed ID: 2532405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal tubular damage after renal stone treatment.
    Trinchieri A; Mandressi A; Zanetti G; Ruoppolo M; Tombolini P; Pisani E
    Urol Res; 1988; 16(2):101-4. PubMed ID: 3368997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urinary NAG excretion after anesthesia-free extracorporeal lithotripsy of renal stones: a marker of early tubular damage.
    Trinchieri A; Zanetti G; Tombolini P; Mandressi A; Ruoppolo M; Tura M; Montanari E; Pisani E
    Urol Res; 1990; 18(4):259-62. PubMed ID: 1699345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side effects of extracorporeal shock-wave exposure in patients treated by extracorporeal shock-wave lithotripsy for upper urinary tract stone.
    Kishimoto T; Yamamoto K; Sugimoto T; Yoshihara H; Maekawa M
    Eur Urol; 1986; 12(5):308-13. PubMed ID: 3780794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limitation of shock-wave-induced renal tubular dysfunction by nifedipine.
    Strohmaier WL; Koch J; Balk N; Wilbert DM; Bichler KH
    Eur Urol; 1994; 25(2):99-104. PubMed ID: 7511106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagy activation protects shock wave induced renal tubular epithelial cell apoptosis may through modulation of Akt/ GSK-3β pathway.
    Long Q; Li X; He H; He D
    Int J Biol Sci; 2016; 12(12):1461-1471. PubMed ID: 27994511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo assessment of free radical activity during shock wave lithotripsy using a microdialysis system: the renoprotective action of allopurinol.
    Munver R; Delvecchio FC; Kuo RL; Brown SA; Zhong P; Preminger GM
    J Urol; 2002 Jan; 167(1):327-34. PubMed ID: 11743351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.