These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10550992)

  • 61. The enteric purinergic P2Y1 receptor.
    Wood JD
    Curr Opin Pharmacol; 2006 Dec; 6(6):564-70. PubMed ID: 16934527
    [TBL] [Abstract][Full Text] [Related]  

  • 62. P2U purinoceptors: cDNA cloning, signal transduction mechanisms and structure-function analysis.
    Lustig KD; Weisman GA; Turner JT; Garrad R; Shiau AK; Erb L
    Ciba Found Symp; 1996; 198():193-204; discussion 204-7. PubMed ID: 8879826
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mutation of histidine 286 of the human P2X4 purinoceptor removes extracellular pH sensitivity.
    Clarke CE; Benham CD; Bridges A; George AR; Meadows HJ
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):697-703. PubMed ID: 10718748
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Molecular and functional characterization of human P2X(2) receptors.
    Lynch KJ; Touma E; Niforatos W; Kage KL; Burgard EC; van Biesen T; Kowaluk EA; Jarvis MF
    Mol Pharmacol; 1999 Dec; 56(6):1171-81. PubMed ID: 10570044
    [TBL] [Abstract][Full Text] [Related]  

  • 65. P2 receptor-mediated effects on the open field behaviour of rats in comparison with behavioural responses induced by the stimulation of dopamine D2-like and by the blockade of ionotrophic glutamate receptors.
    Kittner H; Hoffmann E; Krügel U; Illes P
    Behav Brain Res; 2004 Mar; 149(2):197-208. PubMed ID: 15129782
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Contribution of extracellular negatively charged residues to ATP action and zinc modulation of rat P2X2 receptors.
    Friday SC; Hume RI
    J Neurochem; 2008 May; 105(4):1264-75. PubMed ID: 18194442
    [TBL] [Abstract][Full Text] [Related]  

  • 67. P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production.
    Ferrari D; Idzko M; Dichmann S; Purlis D; Virchow C; Norgauer J; Chiozzi P; Di Virgilio F; Luttmann W
    FEBS Lett; 2000 Dec; 486(3):217-24. PubMed ID: 11119707
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of an intersubunit cross-link between substituted cysteine residues located in the putative ATP binding site of the P2X1 receptor.
    Marquez-Klaka B; Rettinger J; Bhargava Y; Eisele T; Nicke A
    J Neurosci; 2007 Feb; 27(6):1456-66. PubMed ID: 17287520
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functional role of alternative splicing in pituitary P2X2 receptor-channel activation and desensitization.
    Koshimizu T; Tomić M; Van Goor F; Stojilkovic SS
    Mol Endocrinol; 1998 Jul; 12(7):901-13. PubMed ID: 9658396
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Expression of a P2X7 receptor by a subpopulation of human osteoblasts.
    Gartland A; Hipskind RA; Gallagher JA; Bowler WB
    J Bone Miner Res; 2001 May; 16(5):846-56. PubMed ID: 11341329
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The P2Z/P2X7 receptor of microglial cells: a novel immunomodulatory receptor.
    Di Virgilio F; Sanz JM; Chiozzi P; Falzoni S
    Prog Brain Res; 1999; 120():355-68. PubMed ID: 10551011
    [No Abstract]   [Full Text] [Related]  

  • 72. Regulation of biliary secretion through apical purinergic receptors in cultured rat cholangiocytes.
    Schlenker T; Romac JM; Sharara AI; Roman RM; Kim SJ; LaRusso N; Liddle RA; Fitz JG
    Am J Physiol; 1997 Nov; 273(5):G1108-17. PubMed ID: 9374709
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular properties of ATP-gated P2X receptor ion channels.
    Vial C; Roberts JA; Evans RJ
    Trends Pharmacol Sci; 2004 Sep; 25(9):487-93. PubMed ID: 15559251
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The double life of ATP.
    Khakh BS; Burnstock G
    Sci Am; 2009 Dec; 301(6):84-90, 92. PubMed ID: 20058644
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural biology: Trimeric ion-channel design.
    Silberberg SD; Swartz KJ
    Nature; 2009 Jul; 460(7255):580-1. PubMed ID: 19641581
    [No Abstract]   [Full Text] [Related]  

  • 76. Burnstock and the legacy of the inhibitory junction potential and P2Y1 receptors.
    King BF
    Purinergic Signal; 2021 Mar; 17(1):25-31. PubMed ID: 33125617
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Actions of a Series of PPADS Analogs at P2X
    Brown SG; Kim YC; Kim SA; Jacobson KA; Burnstock G; King BF
    Drug Dev Res; 2001 Aug; 53(4):281-291. PubMed ID: 27134334
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evidence for the Recognition of Non-Nucleotide Antagonists Within the Transmembrane Domains of the Human P2Y(1) Receptor.
    Guo D; von Kügelgen I; Moro S; Kim YC; Jacobson KA
    Drug Dev Res; 2002 Dec; 57(4):173-181. PubMed ID: 23105165
    [TBL] [Abstract][Full Text] [Related]  

  • 79. P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential.
    Weisman GA; Woods LT; Erb L; Seye CI
    CNS Neurol Disord Drug Targets; 2012 Sep; 11(6):722-38. PubMed ID: 22963441
    [TBL] [Abstract][Full Text] [Related]  

  • 80. P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y₂ receptor interactions in neuroinflammation.
    Weisman GA; Camden JM; Peterson TS; Ajit D; Woods LT; Erb L
    Mol Neurobiol; 2012 Aug; 46(1):96-113. PubMed ID: 22467178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.