BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10551285)

  • 41. cAMP stimulation of CFTR-expressing Xenopus oocytes activates a chromanol-inhibitable K+ conductance.
    Mall M; Kunzelmann K; Hipper A; Busch AE; Greger R
    Pflugers Arch; 1996 Jul; 432(3):516-22. PubMed ID: 8766012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ENaC activity requires CFTR channel function independently of phosphorylation in sweat duct.
    Reddy MM; Quinton PM
    J Membr Biol; 2005 Sep; 207(1):23-33. PubMed ID: 16463140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Beta-adrenergic receptors couple to CFTR chloride channels of intercalated mitochondria-rich cells in the heterocellular toad skin epithelium.
    Larsen EH; Amstrup J; Willumsen NJ
    Biochim Biophys Acta; 2003 Dec; 1618(2):140-52. PubMed ID: 14729151
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain.
    Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864
    [TBL] [Abstract][Full Text] [Related]  

  • 45. No evidence for inhibition of ENaC through CFTR-mediated release of ATP.
    König J; Schreiber R; Mall M; Kunzelmann K
    Biochim Biophys Acta; 2002 Sep; 1565(1):17-28. PubMed ID: 12225848
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore.
    Zhang ZR; Zeltwanger S; McCarty NA
    J Membr Biol; 2004 May; 199(1):15-28. PubMed ID: 15366420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activation of a CFTR-mediated chloride current in a rabbit corneal epithelial cell line.
    Al-Nakkash L; Reinach PS
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2364-70. PubMed ID: 11527951
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of extracellular UTP-activated Cl- current by P2Y-PLC-PKC signaling and ATP hydrolysis in mouse ventricular myocytes.
    Yamamoto S; Ichishima K; Ehara T
    J Physiol Sci; 2007 Apr; 57(2):85-94. PubMed ID: 17291397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity.
    Londino JD; Lazrak A; Jurkuvenaite A; Collawn JF; Noah JW; Matalon S
    Am J Physiol Lung Cell Mol Physiol; 2013 May; 304(9):L582-92. PubMed ID: 23457187
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites.
    Weinreich F; Riordan JR; Nagel G
    J Gen Physiol; 1999 Jul; 114(1):55-70. PubMed ID: 10398692
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benzopyrimido-pyrrolo-oxazine-dione (R)-BPO-27 Inhibits CFTR Chloride Channel Gating by Competition with ATP.
    Kim Y; Anderson MO; Park J; Lee MG; Namkung W; Verkman AS
    Mol Pharmacol; 2015 Oct; 88(4):689-96. PubMed ID: 26174774
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and Na-K-Cl cotransporter NKCC1 isoform mediate the vasorelaxant action of genistein in isolated rat aorta.
    Valero MS; Garay RP; Gros P; Alda JO
    Eur J Pharmacol; 2006 Aug; 544(1-3):126-31. PubMed ID: 16859673
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative pharmacology of the activity of wild-type and G551D mutated CFTR chloride channel: effect of the benzimidazolone derivative NS004.
    Dérand R; Bulteau-Pignoux L; Becq F
    J Membr Biol; 2003 Jul; 194(2):109-17. PubMed ID: 14502435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of a 7,8-benzoflavone double effect on CFTR Cl(-) channel activity.
    Ferrera L; Pincin C; Moran O
    J Membr Biol; 2007 Dec; 220(1-3):1-9. PubMed ID: 17876495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel.
    Berger HA; Anderson MP; Gregory RJ; Thompson S; Howard PW; Maurer RA; Mulligan R; Smith AE; Welsh MJ
    J Clin Invest; 1991 Oct; 88(4):1422-31. PubMed ID: 1717515
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional expression of cystic fibrosis transmembrane conductance regulator in rat oviduct epithelium.
    Chen M; Du J; Jiang W; Zuo W; Wang F; Li M; Chan H; Zhou W
    Acta Biochim Biophys Sin (Shanghai); 2008 Oct; 40(10):864-72. PubMed ID: 18850051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and function of cystic fibrosis transmembrane conductance regulator in rat intrapulmonary arteries.
    Robert R; Savineau JP; Norez C; Becq F; Guibert C
    Eur Respir J; 2007 Nov; 30(5):857-64. PubMed ID: 17596272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101.
    Stahl M; Stahl K; Brubacher MB; Forrest JN
    Am J Physiol Cell Physiol; 2012 Jan; 302(1):C67-76. PubMed ID: 21940661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CFTR chloride channel is a molecular target of the natural cancer preventive agent resveratrol.
    Yang S; Yu BO; Sui Y; Zhang Y; Wang X; Hou S; Ma T; Yang H
    Pharmazie; 2013 Sep; 68(9):772-6. PubMed ID: 24147347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.