BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10551590)

  • 1. Relationship between cardiopulmonary bypass flow rate and cerebral embolization in dogs.
    Sungurtekin H; Plöchl W; Cook DJ
    Anesthesiology; 1999 Nov; 91(5):1387-93. PubMed ID: 10551590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bypass flow, mean arterial pressure, and cerebral perfusion during cardiopulmonary bypass in dogs.
    Sungurtekin H; Boston US; Cook DJ
    J Cardiothorac Vasc Anesth; 2000 Feb; 14(1):25-8. PubMed ID: 10698388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cerebral embolization on regional autoregulation during cardiopulmonary bypass in dogs.
    Sungurtekin H; Boston US; Orszulak TA; Cook DJ
    Ann Thorac Surg; 2000 Apr; 69(4):1130-4. PubMed ID: 10800806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification and distribution of cerebral emboli during cardiopulmonary bypass in the swine: the impact of PaCO2.
    Plöchl W; Cook DJ
    Anesthesiology; 1999 Jan; 90(1):183-90. PubMed ID: 9915327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emboli formation rather than inflammatory mediators are responsible for increased cerebral water content after conventional and assisted beating-heart myocardial revascularization in a porcine model.
    Bierbach B; Meier M; Kasper-König W; Heimann A; Alessandri B; Horstick G; Oelert H; Kempski O
    Stroke; 2008 Jan; 39(1):213-9. PubMed ID: 18063820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-stat management reduces the cerebral metabolic rate for oxygen during profound hypothermia (17 degrees C). A study during cardiopulmonary bypass in rabbits.
    Hindman BJ; Dexter F; Cutkomp J; Smith T
    Anesthesiology; 1995 Apr; 82(4):983-95; discussion 24A. PubMed ID: 7717572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction in brain embolization using the Aegis aortic cannula during bypass in swine.
    Cook DJ; Zehr KJ; Orszulak TA
    Ann Thorac Surg; 2002 Sep; 74(3):825-9. PubMed ID: 12238846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pump flow rate on cerebral blood flow during hypothermic cardiopulmonary bypass in adults.
    Cook DJ; Proper JA; Orszulak TA; Daly RC; Oliver WC
    J Cardiothorac Vasc Anesth; 1997 Jun; 11(4):415-9. PubMed ID: 9187987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenylephrine increases cerebral blood flow during low-flow hypothermic cardiopulmonary bypass in baboons.
    Schwartz AE; Minanov O; Stone JG; Adams DC; Sandhu AA; Pearson ME; Kwiatkowski P; Young WL; Michler RE
    Anesthesiology; 1996 Aug; 85(2):380-4. PubMed ID: 8712454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature and PaCO2 on cerebral embolization during cardiopulmonary bypass in swine.
    Cook DJ; Plöchl W; Orszulak TA
    Ann Thorac Surg; 2000 Feb; 69(2):415-20. PubMed ID: 10735673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profound reduction in brain embolization using an endoaortic baffle during bypass in swine.
    Cook DJ; Zehr KJ; Orszulak TA; Slater JM
    Ann Thorac Surg; 2002 Jan; 73(1):198-202. PubMed ID: 11834010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of blood pressure on cerebral outcome in a rat model of cerebral air embolism during cardiopulmonary bypass.
    Qing M; Shim JK; Grocott HP; Sheng H; Mathew JP; Mackensen GB
    J Thorac Cardiovasc Surg; 2011 Aug; 142(2):424-9. PubMed ID: 21277590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual air in the venous cannula increases cerebral embolization at the onset of cardiopulmonary bypass.
    Rodriguez RA; Rubens F; Belway D; Nathan HJ
    Eur J Cardiothorac Surg; 2006 Feb; 29(2):175-80. PubMed ID: 16376562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longer duration of cardiopulmonary bypass is associated with greater numbers of cerebral microemboli.
    Brown WR; Moody DM; Challa VR; Stump DA; Hammon JW
    Stroke; 2000 Mar; 31(3):707-13. PubMed ID: 10700508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A paradox of cerebral hyperperfusion in the face of cerebral hypotension: the effect of perfusion pressure on cerebral blood flow and metabolism during normothermic cardiopulmonary bypass.
    Philpott JM; Eskew TD; Sun YS; Dennis KJ; Foreman BH; Fairbrother SN; Brown PM; Koutlas TC; Chitwood WR; Lust RM
    J Surg Res; 1998 Jul; 77(2):141-9. PubMed ID: 9733601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsatile versus nonpulsatile flow. No difference in cerebral blood flow or metabolism during normothermic cardiopulmonary bypass in rabbits.
    Hindman BJ; Dexter F; Smith T; Cutkomp J
    Anesthesiology; 1995 Jan; 82(1):241-50. PubMed ID: 7832307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral blood flow measured by positron emission tomography during normothermic cardiopulmonary bypass: an experimental porcine study.
    Thomassen SA; Kjærgaard B; Alstrup AKO; Munk OL; Frøkiær J; Larsson A; Rasmussen BS
    Perfusion; 2018 Jul; 33(5):346-353. PubMed ID: 29380669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiopulmonary bypass time does not affect cerebral blood flow.
    Croughwell ND; Reves JG; White WD; Grocott HP; Baldwin BI; Clements FM; Davis RD; Jones RH; Newman MF
    Ann Thorac Surg; 1998 May; 65(5):1226-30. PubMed ID: 9594842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-flow cardiopulmonary bypass: importance of blood pressure in maintaining cerebral blood flow.
    Michler RE; Sandhu AA; Young WL; Schwartz AE
    Ann Thorac Surg; 1995 Dec; 60(6 Suppl):S525-8. PubMed ID: 8604926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axillary artery cannulation for cardiopulmonary bypass reduces cerebral microemboli.
    Hedayati N; Sherwood JT; Schomisch SJ; Carino JL; Markowitz AH
    J Thorac Cardiovasc Surg; 2004 Sep; 128(3):386-90. PubMed ID: 15354096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.