BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10551847)

  • 1. Biotin protein ligase from Saccharomyces cerevisiae. The N-terminal domain is required for complete activity.
    Polyak SW; Chapman-Smith A; Brautigan PJ; Wallace JC
    J Biol Chem; 1999 Nov; 274(46):32847-54. PubMed ID: 10551847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of protein substrate presentation in the post-translational attachment of biotin to biotin domains.
    Polyak SW; Chapman-Smith A; Mulhern TD; Cronan JE; Wallace JC
    J Biol Chem; 2001 Feb; 276(5):3037-45. PubMed ID: 11042165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant.
    Xu Y; Beckett D
    Biochemistry; 1996 Feb; 35(6):1783-92. PubMed ID: 8639659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotinylation in the hyperthermophile Aquifex aeolicus.
    Clarke DJ; Coulson J; Baillie R; Campopiano DJ
    Eur J Biochem; 2003 Mar; 270(6):1277-87. PubMed ID: 12631286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The wing of a winged helix-turn-helix transcription factor organizes the active site of BirA, a bifunctional repressor/ligase.
    Chakravartty V; Cronan JE
    J Biol Chem; 2013 Dec; 288(50):36029-39. PubMed ID: 24189073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immobilized biotin ligase: surface display of Escherichia coli BirA on Saccharomyces cerevisiae.
    Parthasarathy R; Bajaj J; Boder ET
    Biotechnol Prog; 2005; 21(6):1627-31. PubMed ID: 16321044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-linked structural changes in the Escherichia coli biotin repressor: the significance of surface loops for binding and allostery.
    Streaker ED; Beckett D
    J Mol Biol; 1999 Sep; 292(3):619-32. PubMed ID: 10497026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of a conserved sequence motif in biotin holoenzyme synthetases.
    Kwon K; Beckett D
    Protein Sci; 2000 Aug; 9(8):1530-9. PubMed ID: 10975574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterisation of class III biotin protein ligases from Botrytis cinerea and Zymoseptoria tritici.
    Sternicki LM; Nguyen S; Pacholarz KJ; Barran P; Pendini NR; Booker GW; Huet Y; Baltz R; Wegener KL; Pukala TL; Polyak SW
    Arch Biochem Biophys; 2020 Sep; 691():108509. PubMed ID: 32717225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a cDNA encoding human holocarboxylase synthetase by functional complementation of a biotin auxotroph of Escherichia coli.
    León-Del-Rio A; Leclerc D; Akerman B; Wakamatsu N; Gravel RA
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4626-30. PubMed ID: 7753853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells--viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG).
    Hoja U; Wellein C; Greiner E; Schweizer E
    Eur J Biochem; 1998 Jun; 254(3):520-6. PubMed ID: 9688262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli.
    Smith PA; Tripp BC; DiBlasio-Smith EA; Lu Z; LaVallie ER; McCoy JM
    Nucleic Acids Res; 1998 Mar; 26(6):1414-20. PubMed ID: 9490786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation.
    Beckett D; Kovaleva E; Schatz PJ
    Protein Sci; 1999 Apr; 8(4):921-9. PubMed ID: 10211839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment.
    Healy S; McDonald MK; Wu X; Yue WW; Kochan G; Oppermann U; Gravel RA
    Biochemistry; 2010 Jun; 49(22):4687-94. PubMed ID: 20443544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of biotin responsiveness in biotin-responsive multiple carboxylase deficiency.
    Dupuis L; Campeau E; Leclerc D; Gravel RA
    Mol Genet Metab; 1999 Feb; 66(2):80-90. PubMed ID: 10068510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple disordered loops function in corepressor-induced dimerization of the biotin repressor.
    Kwon K; Streaker ED; Ruparelia S; Beckett D
    J Mol Biol; 2000 Dec; 304(5):821-33. PubMed ID: 11124029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases.
    Hsu JL; Martinis SA
    J Mol Biol; 2008 Feb; 376(2):482-91. PubMed ID: 18155724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue.
    Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conserved regulatory mechanism in bifunctional biotin protein ligases.
    Wang J; Beckett D
    Protein Sci; 2017 Aug; 26(8):1564-1573. PubMed ID: 28466579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.