These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 10552322)

  • 41. Passive stiffness of the lumbar torso in flexion, extension, lateral bending, and axial rotation. Effect of belt wearing and breath holding.
    McGill S; Seguin J; Bennett G
    Spine (Phila Pa 1976); 1994 Mar; 19(6):696-704. PubMed ID: 8009335
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison between the effectiveness of expiration and abdominal bracing maneuvers in maintaining spinal stability following sudden trunk loading.
    Ishida H; Suehiro T; Kurozumi C; Watanabe S
    J Electromyogr Kinesiol; 2016 Feb; 26():125-9. PubMed ID: 26711271
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.
    Dolan P; Adams MA
    J Biomech; 1993; 26(4-5):513-22. PubMed ID: 8478353
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of different levels of torso coactivation on trunk muscular and kinematic responses to posteriorly applied sudden loads.
    Vera-Garcia FJ; Brown SH; Gray JR; McGill SM
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):443-55. PubMed ID: 16442677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trunk antagonist co-activation is associated with impaired neuromuscular performance.
    Reeves NP; Cholewicki J; Milner T; Lee AS
    Exp Brain Res; 2008 Jul; 188(3):457-63. PubMed ID: 18443772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trunk muscle contributions of to L4-5 joint rotational stiffness following sudden trunk lateral bend perturbations.
    Cort JA; Dickey JP; Potvin JR
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1334-42. PubMed ID: 24148963
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of antagonist muscle EMG in the assessment of neuromuscular health of the low back.
    Lee N; Kang H; Shin G
    J Physiol Anthropol; 2015 Apr; 34(1):18. PubMed ID: 25906775
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fast development of high intra-abdominal pressure when a trained participant is exposed to heavy, sudden trunk loads.
    Essendrop M; Trojel Hye-Knudsen C; Skotte J; Faber Hansen A; Schibye B
    Spine (Phila Pa 1976); 2004 Jan; 29(1):94-9. PubMed ID: 14699283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Age and gender related neuromuscular changes in trunk flexion-extension.
    Kienbacher T; Paul B; Habenicht R; Starek C; Wolf M; Kollmitzer J; Mair P; Ebenbichler G
    J Neuroeng Rehabil; 2015 Jan; 12(1):3. PubMed ID: 25566847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparison of lumbopelvic motion patterns and erector spinae behavior between asymptomatic subjects and patients with recurrent low back pain during pain-free periods.
    Sánchez-Zuriaga D; López-Pascual J; Garrido-Jaén D; García-Mas MA
    J Manipulative Physiol Ther; 2015 Feb; 38(2):130-7. PubMed ID: 25499193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of belt pressure and breath held on trunk electromyography.
    Lee YH; Kang SM
    Spine (Phila Pa 1976); 2002 Feb; 27(3):282-90. PubMed ID: 11805693
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Muscular and kinematic behavior of the lumbar spine during flexion-extension.
    Kaigle AM; Wessberg P; Hansson TH
    J Spinal Disord; 1998 Apr; 11(2):163-74. PubMed ID: 9588475
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of different rowing exercises: trunk muscle activation and lumbar spine motion, load, and stiffness.
    Fenwick CM; Brown SH; McGill SM
    J Strength Cond Res; 2009 Mar; 23(2):350-8. PubMed ID: 19197209
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On neck muscle activity and load reduction in sitting postures. An electromyographic and biomechanical study with applications in ergonomics and rehabilitation.
    Schüldt K
    Scand J Rehabil Med Suppl; 1988; 19():1-49. PubMed ID: 3166203
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Midlumbar lateral flexion stability measured in healthy volunteers by in vivo fluoroscopy.
    Mellor FE; Muggleton JM; Bagust J; Mason W; Thomas PW; Breen AC
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E811-7. PubMed ID: 19829245
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trunk stabilizer muscle activity during manual lifting with and without back belt use in experienced workers.
    Kurustien N; Mekhora K; Jalayondeja W; Nanthavanij S
    J Med Assoc Thai; 2014 Jul; 97 Suppl 7():S75-9. PubMed ID: 25141532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neck posture during lifting and its effect on trunk muscle activation and lumbar spine posture.
    Hlavenka TM; Christner VFK; Gregory DE
    Appl Ergon; 2017 Jul; 62():28-33. PubMed ID: 28411737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of lumbosacral orthoses on spine stability: what changes in EMG can be expected?
    Cholewicki J
    J Orthop Res; 2004 Sep; 22(5):1150-5. PubMed ID: 15304292
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of abdominal belts on the cross-sectional shape of the trunk during intense contraction of the trunk muscles observed by computer tomography.
    Miyamoto K; Iinuma N; Ueki S; Shimizu K
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1220-6. PubMed ID: 18809232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alterations in trunk bending stiffness following changes in stability and equilibrium demands of a load holding task.
    Shojaei I; Suri C; van Dieën JH; Bazrgari B
    J Biomech; 2018 Aug; 77():163-170. PubMed ID: 30037577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.