These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 10552665)
21. Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Soonwera M Parasitol Res; 2015 Dec; 114(12):4531-43. PubMed ID: 26337270 [TBL] [Abstract][Full Text] [Related]
22. Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Tawatsin A; Asavadachanukorn P; Thavara U; Wongsinkongman P; Bansidhi J; Boonruad T; Chavalittumrong P; Soonthornchareonnon N; Komalamisra N; Mulla MS Southeast Asian J Trop Med Public Health; 2006 Sep; 37(5):915-31. PubMed ID: 17333734 [TBL] [Abstract][Full Text] [Related]
23. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Birkett MA; Hassanali A; Hoglund S; Pettersson J; Pickett JA Phytochemistry; 2011 Jan; 72(1):109-14. PubMed ID: 21056438 [TBL] [Abstract][Full Text] [Related]
24. Melanotaenia duboulayi influence oviposition site selection by Culex annulirostris (Diptera: Culicidae) and Aedes notoscriptus (Diptera: Culicidae) but not Culex quinquefasciatus (Diptera: Culicidae). Hurst TP; Kay BH; Brown MD; Ryan PA Environ Entomol; 2010 Apr; 39(2):545-51. PubMed ID: 20388286 [TBL] [Abstract][Full Text] [Related]
25. Molecular simulations study of ligand-release mechanism in an odorant-binding protein from the southern house mosquito. Yu H; Zhao X; Feng XL; Chen X; Borowiak-Palen E; Huang XR J Biomol Struct Dyn; 2013; 31(5):485-94. PubMed ID: 22889417 [TBL] [Abstract][Full Text] [Related]
26. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. Leal WS; Barbosa RM; Xu W; Ishida Y; Syed Z; Latte N; Chen AM; Morgan TI; Cornel AJ; Furtado A PLoS One; 2008 Aug; 3(8):e3045. PubMed ID: 18725946 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of a nonanal-trimethylamine lure for collection of Culex quinquefasciatus (Diptera: Culicidae) in gravid traps. Irish SR; Moore SJ; Bruce J; Birkett MA; Cameron MM J Med Entomol; 2013 May; 50(3):619-23. PubMed ID: 23802458 [TBL] [Abstract][Full Text] [Related]
28. Oviposition Behavior of Culex tarsalis (Diptera: Culicidae) Responding to Semiochemicals Associated with the Western Mosquitofish, Gambusia affinis (Cyprinodontiformes: Poecilliidae). Why AM; Walton WE J Med Entomol; 2020 Feb; 57(2):343-352. PubMed ID: 31742605 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of four sampling techniques for surveillance of Culex quinquefasciatus (Diptera: Culicidae) and other mosquitoes in African rice agroecosystems. Muturi EJ; Mwangangi J; Shililu J; Muriu S; Jacob B; Mbogo CM; John G; Novak R J Med Entomol; 2007 May; 44(3):503-8. PubMed ID: 17547238 [TBL] [Abstract][Full Text] [Related]
31. Forced egg retention and oviposition behavior of malaria, dengue and filariasis vectors to a topical repellent diethyl-phenylacetamide. Seenivasagan T; Iqbal ST; Guha L Indian J Exp Biol; 2015 Jul; 53(7):440-5. PubMed ID: 26245028 [TBL] [Abstract][Full Text] [Related]
32. Oviposition responses of gravid Culex quinquefasciatus and Culex tarsalis to bulrush (Schoenoplectus acutus) infusions. Du Y; Millar JG J Am Mosq Control Assoc; 1999 Dec; 15(4):500-9. PubMed ID: 10612614 [TBL] [Abstract][Full Text] [Related]
33. (1)H, (15)N, and (13)C chemical shift assignments of the mosquito odorant binding protein-1 (CquiOBP1) bound to the mosquito oviposition pheromone. Xu X; Xu W; Ishida Y; Li Y; Leal WS; Ames JB Biomol NMR Assign; 2009 Dec; 3(2):195-7. PubMed ID: 19888689 [TBL] [Abstract][Full Text] [Related]
34. RNAi-based demonstration of direct link between specific odorant receptors and mosquito oviposition behavior. Zhu F; Xu P; Barbosa RM; Choo YM; Leal WS Insect Biochem Mol Biol; 2013 Oct; 43(10):916-23. PubMed ID: 23911547 [TBL] [Abstract][Full Text] [Related]
35. Oviposition substrate selection by Florida mosquitoes in response to pathogen-infected conspecific larvae. Zettel Nalen CM; Allan SA; Becnel JJ; Kaufman PE J Vector Ecol; 2013 Jun; 38(1):182-7. PubMed ID: 23701624 [TBL] [Abstract][Full Text] [Related]
36. The role of mosquito olfaction in oviposition site location and in the avoidance of unsuitable hosts. Pickett JA; Woodcock CM Ciba Found Symp; 1996; 200():109-19; discussion 119-23, 178-83. PubMed ID: 8894293 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of enhanced oviposition attractant formulations against Aedes and Culex vector mosquitoes in urban and semi-urban areas. Suman DS Parasitol Res; 2019 Mar; 118(3):743-750. PubMed ID: 30719534 [TBL] [Abstract][Full Text] [Related]
38. Dispersal of male and female Culex quinquefasciatus and Aedes albopictus mosquitoes using stable isotope enrichment. Medeiros MC; Boothe EC; Roark EB; Hamer GL PLoS Negl Trop Dis; 2017 Jan; 11(1):e0005347. PubMed ID: 28135281 [TBL] [Abstract][Full Text] [Related]
39. Bioassays for Culex (Diptera: Culicidae) mosquito oviposition attractants and stimulants. Isoe J; Millar JG; Beehler JW J Med Entomol; 1995 Jul; 32(4):475-83. PubMed ID: 7650709 [TBL] [Abstract][Full Text] [Related]