These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10552893)

  • 1. Antifungal proteins and grain mold resistance in sorghum with nonpigmented testa.
    Rodríguez-Herrera R; Waniska RD; Rooney WL
    J Agric Food Chem; 1999 Nov; 47(11):4802-6. PubMed ID: 10552893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity of antifungal proteins against mold in sorghum caryopses in the field.
    Bueso FJ; Waniska RD; Rooney WL; Bejosano FP
    J Agric Food Chem; 2000 Mar; 48(3):810-6. PubMed ID: 10725155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal proteins in commercial hybrids and elite sorghums.
    Bejosano FP; Waniska RD; Rooney WL
    J Agric Food Chem; 2003 Sep; 51(20):5911-5. PubMed ID: 13129294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal proteins and other mechanisms in the control of sorghum stalk rot and grain mold.
    Waniska RD; Venkatesha RT; Chandrashekar A; Krishnaveni S; Bejosano FP; Jeoung J; Jayaraj J; Muthukrishnan S; Liang GH
    J Agric Food Chem; 2001 Oct; 49(10):4732-42. PubMed ID: 11600015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of chitinase and sormatin accumulation in the resistance of sorghum cultivars to grain mold.
    Prom LK; Waniska RD; Kollo AI; Rooney WL; Bejosano FP
    J Agric Food Chem; 2005 Jul; 53(14):5565-70. PubMed ID: 15998115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to Grain Mold and Downy Mildew in a Mini-Core Collection of Sorghum Germplasm.
    Sharma R; Rao VP; Upadhyaya HD; Reddy VG; Thakur RP
    Plant Dis; 2010 Apr; 94(4):439-444. PubMed ID: 30754520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Sorghum Genotypes for Improved Yield and Resistance to Grain Mold Using Population Breeding Approach.
    Aruna C; Das IK; Reddy PS; Ghorade RB; Gulhane AR; Kalpande VV; Kajjidoni ST; Hanamaratti NG; Chattannavar SN; Mehtre S; Gholve V; Kamble KR; Deepika C; Kannababu N; Bahadure DM; Govindaraj M; Tonapi VA
    Front Plant Sci; 2021; 12():687332. PubMed ID: 34394141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Susceptibility to Fusarium Head Blight and Grain Mold in A
    Stack JP; Pedersen JF
    Plant Dis; 2003 Feb; 87(2):172-176. PubMed ID: 30812923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Wetness Duration and Grain Development Stages on Sorghum Grain Mold Infection.
    Navi SS; Bandyopadhyay R; Reddy RK; Thakur RP; Yang XB
    Plant Dis; 2005 Aug; 89(8):872-878. PubMed ID: 30786520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects for reducing fumonisin contamination of maize through genetic modification.
    Duvick J
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):337-42. PubMed ID: 11359705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractionation of proteins from low-tannin sorghum grain.
    Taylor JR; Schüssler L; van der Walt WH
    J Agric Food Chem; 1984; 32(1):149-54. PubMed ID: 6707328
    [No Abstract]   [Full Text] [Related]  

  • 12. Harnessing Sorghum Landraces to Breed High-Yielding, Grain Mold-Tolerant Cultivars With High Protein for Drought-Prone Environments.
    Nagesh Kumar MV; Ramya V; Govindaraj M; Sameer Kumar CV; Maheshwaramma S; Gokenpally S; Prabhakar M; Krishna H; Sridhar M; Venkata Ramana M; Avil Kumar K; Jagadeeshwar R
    Front Plant Sci; 2021; 12():659874. PubMed ID: 34276722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal Effect and Protective Role of Ursolic Acid and Three Phenolic Derivatives in the Management of Sorghum Grain Mold Under Field Conditions.
    Shaik AB; Ahil SB; Govardhanam R; Senthi M; Khan R; Sojitra R; Kumar S; Srinivas A
    Chem Biodivers; 2016 Sep; 13(9):1158-1164. PubMed ID: 27447843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate suitability of different genotypes of sorghum in relation to Aspergillus infection and aflatoxin production.
    Ratnavathi CV; Sashidhar RB
    J Agric Food Chem; 2003 May; 51(11):3482-92. PubMed ID: 12744687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial characterization of tannin-protein complexes in five varieties of grain sorghum by automated gel filtration chromatography.
    Fishman ML; Neucere NJ
    J Agric Food Chem; 1980; 28(2):477-80. PubMed ID: 7391386
    [No Abstract]   [Full Text] [Related]  

  • 16. Impact of Planting Dates and Climatic Factors on the Incidence and Severity of Sorghum Grain Mold in Morelos, Mexico.
    Montes-Belmont R; Méndez-Ramírez I; Flores-Moctezuma HE; Nava-Juárez RA
    Plant Dis; 2003 Sep; 87(9):1139-1143. PubMed ID: 30812832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of antimicrobial cyclic dipeptides from Pseudomonas fluorescens and their efficacy on sorghum grain mold fungi.
    Sajeli Begum A; Basha SA; Raghavendra G; Kumar MV; Singh Y; Patil JV; Tanemura Y; Fujimoto Y
    Chem Biodivers; 2014 Jan; 11(1):92-100. PubMed ID: 24443429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Improvement of protein quality of popped sorghum with soybean grain].
    Bressani R; Tuna E
    Arch Latinoam Nutr; 1993 Mar; 43(1):46-9. PubMed ID: 8002702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ergosterol concentration and variability in genotype-by-pathogen interaction for grain mold resistance in sorghum.
    Mpofu LT; McLaren NW
    Planta; 2014 Aug; 240(2):239-50. PubMed ID: 24817586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Chemical composition of 11 varieties of sorghum (Sorghum vulgare) before and after popping the kernels].
    Tuna E; Bressani R
    Arch Latinoam Nutr; 1992 Sep; 42(3):291-300. PubMed ID: 1342163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.