BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 10552969)

  • 1. The proliferative potential of myeloma plasma cells manifest in the SCID-hu host.
    Yaccoby S; Epstein J
    Blood; 1999 Nov; 94(10):3576-82. PubMed ID: 10552969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations.
    Yaccoby S; Barlogie B; Epstein J
    Blood; 1998 Oct; 92(8):2908-13. PubMed ID: 9763577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD19-CD45 low/- CD38 high/CD138+ plasma cells enrich for human tumorigenic myeloma cells.
    Kim D; Park CY; Medeiros BC; Weissman IL
    Leukemia; 2012 Dec; 26(12):2530-7. PubMed ID: 22733078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clonotypic myeloma cells able to xenograft myeloma to nonobese diabetic severe combined immunodeficient mice copurify with CD34 (+) hematopoietic progenitors.
    Pilarski LM; Belch AR
    Clin Cancer Res; 2002 Oct; 8(10):3198-204. PubMed ID: 12374689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple myeloma-initiating cells.
    Hosen N
    Int J Hematol; 2013 Mar; 97(3):306-12. PubMed ID: 23420183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity.
    Yaccoby S; Pearse RN; Johnson CL; Barlogie B; Choi Y; Epstein J
    Br J Haematol; 2002 Feb; 116(2):278-90. PubMed ID: 11841428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SCID-hu myeloma model.
    Epstein J; Yaccoby S
    Methods Mol Med; 2005; 113():183-90. PubMed ID: 15968103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice.
    Pilarski LM; Hipperson G; Seeberger K; Pruski E; Coupland RW; Belch AR
    Blood; 2000 Feb; 95(3):1056-65. PubMed ID: 10648422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimyeloma efficacy of thalidomide in the SCID-hu model.
    Yaccoby S; Johnson CL; Mahaffey SC; Wezeman MJ; Barlogie B; Epstein J
    Blood; 2002 Dec; 100(12):4162-8. PubMed ID: 12393672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice.
    Pilarski LM; Seeberger K; Coupland RW; Eshpeter A; Keats JJ; Taylor BJ; Belch AR
    Exp Hematol; 2002 Mar; 30(3):221-8. PubMed ID: 11882359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of animal models in multiple myeloma.
    Libouban H
    Morphologie; 2015 Jun; 99(325):63-72. PubMed ID: 25898798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of a model for the homing of multiple myeloma cells to human bone marrow.
    Urashima M; Chen BP; Chen S; Pinkus GS; Bronson RT; Dedera DA; Hoshi Y; Teoh G; Ogata A; Treon SP; Chauhan D; Anderson KC
    Blood; 1997 Jul; 90(2):754-65. PubMed ID: 9226176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SCID-rab model: a novel in vivo system for primary human myeloma demonstrating growth of CD138-expressing malignant cells.
    Yata K; Yaccoby S
    Leukemia; 2004 Nov; 18(11):1891-7. PubMed ID: 15385929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonirradiated NOD/SCID-human chimeric animal model for primary human multiple myeloma: a potential in vivo culture system.
    Huang SY; Tien HF; Su FH; Hsu SM
    Am J Pathol; 2004 Feb; 164(2):747-56. PubMed ID: 14742278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients.
    Hosen N; Matsuoka Y; Kishida S; Nakata J; Mizutani Y; Hasegawa K; Mugitani A; Ichihara H; Aoyama Y; Nishida S; Tsuboi A; Fujiki F; Tatsumi N; Nakajima H; Hino M; Kimura T; Yata K; Abe M; Oka Y; Oji Y; Kumanogoh A; Sugiyama H
    Leukemia; 2012 Sep; 26(9):2135-41. PubMed ID: 22430638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A clinically relevant SCID-hu in vivo model of human multiple myeloma.
    Tassone P; Neri P; Carrasco DR; Burger R; Goldmacher VS; Fram R; Munshi V; Shammas MA; Catley L; Jacob GS; Venuta S; Anderson KC; Munshi NC
    Blood; 2005 Jul; 106(2):713-6. PubMed ID: 15817674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engraftment of human hematopoietic precursor cells with secondary transfer potential in SCID-hu mice.
    Chen BP; Galy A; Kyoizumi S; Namikawa R; Scarborough J; Webb S; Ford B; Cen DZ; Chen SC
    Blood; 1994 Oct; 84(8):2497-505. PubMed ID: 7522631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term engraftment of fresh human myeloma cells in SCID mice.
    Feo-Zuppardi FJ; Taylor CW; Iwato K; Lopez MH; Grogan TM; Odeleye A; Hersh EM; Salmon SE
    Blood; 1992 Dec; 80(11):2843-50. PubMed ID: 1450409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD19 expression and growth inhibition of tumours in human multiple myeloma.
    Ishikawa H; Tsuyama N; Mahmoud MS; Fujii R; Abroun S; Liu S; Li FJ; Kawano MM
    Leuk Lymphoma; 2002 Mar; 43(3):613-6. PubMed ID: 12002767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mature human hematopoietic cells in donor bone marrow complicate interpretation of stem/progenitor cell assays in xenogeneic hematopoietic chimeras.
    Ramírez M; Rottman GA; Shultz LD; Civin CI
    Exp Hematol; 1998 Apr; 26(4):332-44. PubMed ID: 9546317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.