BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

927 related articles for article (PubMed ID: 10553102)

  • 21. Absence of T cell tolerance to pancreatic islet cells.
    Burtles SS; Trembleau S; Drexler K; Hurtenbach U
    J Immunol; 1992 Sep; 149(6):2185-93. PubMed ID: 1355504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CD4+CD25+ regulatory T cells control the progression from periinsulitis to destructive insulitis in murine autoimmune diabetes.
    Ott PA; Anderson MR; Tary-Lehmann M; Lehmann PV
    Cell Immunol; 2005 May; 235(1):1-11. PubMed ID: 16122720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new type of CD4+ suppressor T cell completely prevents spontaneous autoimmune diabetes and recurrent diabetes in syngeneic islet-transplanted NOD mice.
    Han HS; Jun HS; Utsugi T; Yoon JW
    J Autoimmun; 1996 Jun; 9(3):331-9. PubMed ID: 8816968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice.
    Peterson JD; Pike B; McDuffie M; Haskins K
    J Immunol; 1994 Sep; 153(6):2800-6. PubMed ID: 8077683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. B lymphocytes are crucial antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice.
    Falcone M; Lee J; Patstone G; Yeung B; Sarvetnick N
    J Immunol; 1998 Aug; 161(3):1163-8. PubMed ID: 9686575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transfer of diabetes from prediabetic NOD mice to NOD-SCID/SCID mice: association with pancreatic insulin content.
    Füchtenbusch M; Larger E; Thebault K; Boitard C
    Horm Metab Res; 2005 Feb; 37(2):63-7. PubMed ID: 15778920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IL-18 inhibits diabetes development in nonobese diabetic mice by counterregulation of Th1-dependent destructive insulitis.
    Rothe H; Hausmann A; Casteels K; Okamura H; Kurimoto M; Burkart V; Mathieu C; Kolb H
    J Immunol; 1999 Aug; 163(3):1230-6. PubMed ID: 10415018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RIP-beta 2-microglobulin transgene expression restores insulitis, but not diabetes, in beta 2-microglobulin null nonobese diabetic mice.
    Kay TW; Parker JL; Stephens LA; Thomas HE; Allison J
    J Immunol; 1996 Oct; 157(8):3688-93. PubMed ID: 8871671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deficiency in NOD antigen-presenting cell function may be responsible for suboptimal CD4+CD25+ T-cell-mediated regulation and type 1 diabetes development in NOD mice.
    Alard P; Manirarora JN; Parnell SA; Hudkins JL; Clark SL; Kosiewicz MM
    Diabetes; 2006 Jul; 55(7):2098-105. PubMed ID: 16804081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Destruction of pancreatic islet cells by cytotoxic T lymphocytes in nonobese diabetic mice.
    Nagata M; Yokono K; Hayakawa M; Kawase Y; Hatamori N; Ogawa W; Yonezawa K; Shii K; Baba S
    J Immunol; 1989 Aug; 143(4):1155-62. PubMed ID: 2663991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IL-4 expression at the onset of islet inflammation predicts nondestructive insulitis in nonobese diabetic mice.
    Fox CJ; Danska JS
    J Immunol; 1997 Mar; 158(5):2414-24. PubMed ID: 9036992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Establishment of islet-specific T-cell lines and clones from islet isografts placed in spontaneously diabetic NOD mice.
    Wegmann DR; Shehadeh N; Lafferty KJ; Norbury-Glaser M; Gill RG; Daniel D
    J Autoimmun; 1993 Oct; 6(5):517-27. PubMed ID: 7902094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for the role of CD8+ cytotoxic T cells in the destruction of pancreatic beta-cells in nonobese diabetic mice.
    Nagata M; Santamaria P; Kawamura T; Utsugi T; Yoon JW
    J Immunol; 1994 Feb; 152(4):2042-50. PubMed ID: 7907110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prevention of recurrent diabetes in syngenic islet-transplanted NOD mice by transfusion of autoreactive T lymphocytes.
    Utsugi T; Nagata M; Kawamura T; Yoon JW
    Transplantation; 1994 Jun; 57(12):1799-804. PubMed ID: 7912459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of T cells to the development of autoimmune diabetes in the NOD mouse model.
    Toyoda H; Formby B
    Bioessays; 1998 Sep; 20(9):750-7. PubMed ID: 9819564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TNF receptor 1-dependent beta cell toxicity as an effector pathway in autoimmune diabetes.
    Kägi D; Ho A; Odermatt B; Zakarian A; Ohashi PS; Mak TW
    J Immunol; 1999 Apr; 162(8):4598-605. PubMed ID: 10201999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. IL-4 triggers autoimmune diabetes by increasing self-antigen presentation within the pancreatic Islets.
    Falcone M; Yeung B; Tucker L; Rodriguez E; Krahl T; Sarvetnick N
    Clin Immunol; 2001 Feb; 98(2):190-9. PubMed ID: 11161975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abrogation of autoimmune diabetes in nonobese diabetic mice and protection against effector lymphocytes by transgenic paracrine TGF-beta1.
    Moritani M; Yoshimoto K; Wong SF; Tanaka C; Yamaoka T; Sano T; Komagata Y; Miyazaki J; Kikutani H; Itakura M
    J Clin Invest; 1998 Aug; 102(3):499-506. PubMed ID: 9691086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library.
    Wong FS; Karttunen J; Dumont C; Wen L; Visintin I; Pilip IM; Shastri N; Pamer EG; Janeway CA
    Nat Med; 1999 Sep; 5(9):1026-31. PubMed ID: 10470079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. E2F-1-deficient NOD/SCID mice developed showing decreased saliva production.
    Matsui-Inohara H; Uematsu H; Narita T; Satoh K; Yonezawa H; Kuroda K; Ito T; Yoneda S; Kawarai T; Sugiya H; Watanabe H; Senpuku H
    Exp Biol Med (Maywood); 2009 Dec; 234(12):1525-36. PubMed ID: 19934373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.