These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10553490)

  • 1. Effect of exposure to dietary nivalenol on activity of enzymes involved in glutamine catabolism in the epithelium along the gastrointestinal tract of growing pigs.
    Madej M; Lundh T; Lindberg JE
    Arch Tierernahr; 1999; 52(3):275-84. PubMed ID: 10553490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activities of enzymes involved in glutamine metabolism in connection with energy production in the gastrointestinal tract epithelium of newborn, suckling and weaned piglets.
    Madej M; Lundh T; Lindberg JE
    Biol Neonate; 1999; 75(4):250-8. PubMed ID: 10026373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of enzymes involved in energy production in the small intestine during suckling-weaning transition of pigs.
    Madej M; Lundh T; Lindberg JE
    Biol Neonate; 2002; 82(1):53-60. PubMed ID: 12119542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamine metabolism in the gastrointestinal tract of the rat assess by the relative activities of glutaminase (EC 3.5.1.2) and glutamine synthetase (EC 6.3.1.2).
    James LA; Lunn PG; Elia M
    Br J Nutr; 1998 Apr; 79(4):365-72. PubMed ID: 9624228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of glutaminase and glutamine synthetase activities in the human gastrointestinal tract.
    James LA; Lunn PG; Middleton S; Elia M
    Clin Sci (Lond); 1998 Mar; 94(3):313-9. PubMed ID: 9616266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption and metabolism of nivalenol in pigs.
    Hedman R; Pettersson H; Lindberg JE
    Arch Tierernahr; 1997; 50(1):13-24. PubMed ID: 9205733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of nivalenol by gastrointestinal microbes.
    Hedman R; Pettersson H
    Arch Tierernahr; 1997; 50(4):321-9. PubMed ID: 9345596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of K-diformate in starter diets on acidity, microbiota, and the amount of organic acids in the digestive tract of piglets, and on gastric alterations.
    Canibe N; Steien SH; Overland M; Jensen BB
    J Anim Sci; 2001 Aug; 79(8):2123-33. PubMed ID: 11518221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of dietary nivalenol exposure on gross pathology and selected immunological parameters in young pigs.
    Hedman R; Thuvander A; Gadhasson I; Reverter M; Pettersson H
    Nat Toxins; 1997; 5(6):238-46. PubMed ID: 9615312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of the activity of various hydrolases, transaminases, and glutamic dehydrogenase in the digestive tracts of fed and fasted rats.
    Hsu L; Tarver H
    Gastroenterology; 1967 Jul; 53(1):78-87. PubMed ID: 5338501
    [No Abstract]   [Full Text] [Related]  

  • 11. The maximal activity of phosphate-dependent glutaminase and glutamine metabolism in the colon and the small intestine of streptozotocin-diabetic rats.
    Ardawi MS
    Diabetologia; 1987 Feb; 30(2):109-14. PubMed ID: 3569695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sites of organic acid production and absorption in gastrointestinal tract of the pig.
    Argenzio RA; Southworth M
    Am J Physiol; 1975 Feb; 228(2):454-60. PubMed ID: 235219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism.
    Pinkus LM; Windmueller HG
    Arch Biochem Biophys; 1977 Aug; 182(2):506-17. PubMed ID: 900947
    [No Abstract]   [Full Text] [Related]  

  • 14. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties.
    Hedemann MS; Eskildsen M; Laerke HN; Pedersen C; Lindberg JE; Laurinen P; Knudsen KE
    J Anim Sci; 2006 Jun; 84(6):1375-86. PubMed ID: 16699094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The digestive fate of Escherichia coli glutamate dehydrogenase deoxyribonucleic acid from transgenic corn in diets fed to weanling pigs.
    Beagle JM; Apgar GA; Jones KL; Griswold KE; Radcliffe JS; Qiu X; Lightfoot DA; Iqbal MJ
    J Anim Sci; 2006 Mar; 84(3):597-607. PubMed ID: 16478951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glucocorticoid treatment on glucose and glutamine metabolism by the small intestine of the rat.
    Salleh M; Ardawi M; Majzoub MF; Newsholme EA
    Clin Sci (Lond); 1988 Jul; 75(1):93-100. PubMed ID: 3409628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tricarboxylic acid cycle enzymes in the digestive gland of Littorina saxatilis rudis (Maton) and in the daughter sporocysts of Microphallus similis (Jäg.) (Digenea: Microphallidae).
    McManus DP; James BL
    Comp Biochem Physiol B; 1975 Mar; 50(3):491-5. PubMed ID: 1116354
    [No Abstract]   [Full Text] [Related]  

  • 18. Carbonic anhydrase IV expression in rat and human gastrointestinal tract regional, cellular, and subcellular localization.
    Fleming RE; Parkkila S; Parkkila AK; Rajaniemi H; Waheed A; Sly WS
    J Clin Invest; 1995 Dec; 96(6):2907-13. PubMed ID: 8675662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles.
    Coutinho F; Castro C; Rufino-Palomares E; Ordóñez-Grande B; Gallardo MA; Oliva-Teles A; Peres H
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Jan; 191():9-17. PubMed ID: 26424608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hypothyroidism on glucose and glutamine metabolism by the gut of the rat.
    Ardawi MS; Jalalah SM
    Clin Sci (Lond); 1991 Sep; 81(3):347-55. PubMed ID: 1655336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.