These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1055403)

  • 41. Monte Carlo simulation of bifurcation in the intracellular viral kinetics.
    Zhdanov VP
    Phys Biol; 2005 Mar; 2(1):46-50. PubMed ID: 16204856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic and thermodynamic aspects of lipid translocation in biological membranes.
    Frickenhaus S; Heinrich R
    Biophys J; 1999 Mar; 76(3):1293-309. PubMed ID: 10049313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range.
    Li Z; Sau AK; Furdui CM; Anderson KS
    Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interacting enzyme systems at steady state: further Monte Carlo calculations on two-state molecules.
    Hill TL; Chen YD
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5260-3. PubMed ID: 281678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stochastic simulation for death probability of bacterial population considering variability in individual cell inactivation time and initial number of cells.
    Koyama K; Abe H; Kawamura S; Koseki S
    Int J Food Microbiol; 2019 Feb; 290():125-131. PubMed ID: 30326383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulating the proton transfer in gramicidin A by a sequential dynamical Monte Carlo method.
    Till MS; Essigke T; Becker T; Ullmann GM
    J Phys Chem B; 2008 Oct; 112(42):13401-10. PubMed ID: 18826179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Monte Carlo approach to the microdosimetric kinetic model to account for dose rate time structure effects in ion beam therapy with application in treatment planning simulations.
    Manganaro L; Russo G; Cirio R; Dalmasso F; Giordanengo S; Monaco V; Muraro S; Sacchi R; Vignati A; Attili A
    Med Phys; 2017 Apr; 44(4):1577-1589. PubMed ID: 28130821
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems.
    Stephani A; Heinrich R
    Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of membrane parameters on the properties of the nerve impulse.
    Sabah NH; Leibovic KN
    Biophys J; 1972 Sep; 12(9):1132-44. PubMed ID: 4341459
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computer simulation of movement-generating cross-bridges.
    Brokaw CJ
    Biophys J; 1976 Sep; 16(9):1013-27. PubMed ID: 963202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks.
    Puchałka J; Kierzek AM
    Biophys J; 2004 Mar; 86(3):1357-72. PubMed ID: 14990466
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic Monte Carlo method for rule-based modeling of biochemical networks.
    Yang J; Monine MI; Faeder JR; Hlavacek WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031910. PubMed ID: 18851068
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A variational approach to the stochastic aspects of cellular signal transduction.
    Lan Y; Wolynes PG; Papoian GA
    J Chem Phys; 2006 Sep; 125(12):124106. PubMed ID: 17014165
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Universal properties of mechanisms from two-state trajectories.
    Flomenbom O; Silbey RJ
    J Chem Phys; 2008 Mar; 128(11):114902. PubMed ID: 18361613
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a Combined In Vitro Physiologically Based Kinetic (PBK) and Monte Carlo Modelling Approach to Predict Interindividual Human Variation in Phenol-Induced Developmental Toxicity.
    Strikwold M; Spenkelink B; Woutersen RA; Rietjens IMCM; Punt A
    Toxicol Sci; 2017 Jun; 157(2):365-376. PubMed ID: 28498972
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bayesian inference for stochastic kinetic models using a diffusion approximation.
    Golightly A; Wilkinson DJ
    Biometrics; 2005 Sep; 61(3):781-8. PubMed ID: 16135029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simple stochastic simulation.
    Schilstra MJ; Martin SR
    Methods Enzymol; 2009; 467():381-409. PubMed ID: 19897101
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of Monte Carlo calculations in the study of microtubule subunit kinetics.
    Chen Y; Hill TL
    Proc Natl Acad Sci U S A; 1983 Dec; 80(24):7520-3. PubMed ID: 6584870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Asymmetry and external noise-induced free energy transduction.
    Chen YD
    Proc Natl Acad Sci U S A; 1987 Feb; 84(3):729-33. PubMed ID: 3468510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the interindividual human variation in bioactivation of methyleugenol using physiologically based kinetic modeling and Monte Carlo simulations.
    Al-Subeihi AA; Alhusainy W; Kiwamoto R; Spenkelink B; van Bladeren PJ; Rietjens IM; Punt A
    Toxicol Appl Pharmacol; 2015 Mar; 283(2):117-26. PubMed ID: 25549870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.