These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1055415)

  • 1. Role of epithelial architecture and intracellular metabolism in proline uptake and transtubular reclamation in PRO/re mouse kidney.
    Scriver CR; McInnes RR; Mohyuddin F
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1431-5. PubMed ID: 1055415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of the membrane defect in transepithelial transport of taurine by parallel studies in vivo and in vitro in hypertaurinuric mice.
    Chesney RW; Scriver CR; Mohyuddin F
    J Clin Invest; 1976 Jan; 57(1):183-93. PubMed ID: 1245598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-Proline transport by isolated renal tubules from newborn and adult rats.
    Hwang SM; Serabian MA; Roth KS; Segal S
    Pediatr Res; 1983 Jan; 17(1):42-6. PubMed ID: 6835714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline and glycine uptake by renal brushborder membrane vesicles.
    McNamara PD; Ozegović B; Pepe LM; Segal S
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4521-5. PubMed ID: 12509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal iminoglycinuria: evidence that the prolinuria originates in selective deficiency of transport activity in the proximal nephron.
    Scriver CR; Arthus MF; Bergeron M
    Pediatr Res; 1982 Aug; 16(8):684-7. PubMed ID: 7110792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogeny of iminoglycine transport in mammalian kidney.
    Baerlocher KE; Scriver CR; Mohyuddin F
    Proc Natl Acad Sci U S A; 1970 Apr; 65(4):1009-16. PubMed ID: 5266145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and metabolism of sarcosine in hypersarcosinemic and normal phenotypes.
    Glorieux FH; Scriver CR; Delvin E; Mohyuddin F
    J Clin Invest; 1971 Nov; 50(11):2313-22. PubMed ID: 5096515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical, morphological and hybrid studies in hyperprolinemic mice.
    Kanwar YS; Krakower CA; Manaligod JR; Justice P; Wong PW
    Biomedicine; 1975 May; 22(3):209-16. PubMed ID: 240452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of amino acid reabsorption in human kidney. Evidence from the homozygous infant with familial renal iminoglycinuria for multiple proline and glycine systems.
    Lasley L; Scriver CR
    Pediatr Res; 1979 Jan; 13(1):65-70. PubMed ID: 432003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca(2+)-dependent protein kinases modulate proline transport across the renal brush-border membrane.
    Zelikovic I; Przekwas J
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F155-62. PubMed ID: 7840241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Transport of lithium in rat renal cortex slices].
    Günther C; Kersten L; Bräunlich H
    Biomed Biochim Acta; 1983; 42(6):751-62. PubMed ID: 6314999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex.
    Yusufi AN; Murayama N; Keller MJ; Dousa TP
    Endocrinology; 1985 Jun; 116(6):2438-49. PubMed ID: 2986951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-proline transport by newborn rat kidney brush-border membrane vesicles.
    Goldmann DR; Roth KS; Langfitt TW; Segal S
    Biochem J; 1979 Jan; 178(1):253-6. PubMed ID: 435284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal tubular transport of proline, hydroxyproline, and glycine. 3. Genetic basis for more than one mode of transport in human kidney.
    Scriver CR
    J Clin Invest; 1968 Apr; 47(4):823-35. PubMed ID: 5641621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial proline dehydrogenase deficiency in hyperprolinemic PRO/Re mice: genetic and enzymatic analyses.
    Blake RL; Hall JG; Russell ES
    Biochem Genet; 1976 Oct; 14(9-10):739-57. PubMed ID: 1008803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary adaptation of taurine transport by rat renal epithelium.
    Friedman A; Albright PW; Chesney RW
    Life Sci; 1981 Dec; 29(23):2415-9. PubMed ID: 7321766
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolism and uptake of l-proline by human kidney cortex.
    Holtzapple P; Genel M; Rea C; Segal S
    Pediatr Res; 1973 Oct; 7(10):818-25. PubMed ID: 4747312
    [No Abstract]   [Full Text] [Related]  

  • 18. Uptake of glycine by human kidney cortex.
    Roth KS; Holtzapple P; Genel M; Segal S
    Metabolism; 1979 Jun; 28(6):677-82. PubMed ID: 449705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal tubular transport of proline, hydroxyproline, and glycine. II. Hydroxy-l-proline as substrate and as inhibitor in vivo.
    Scriver CR; Goldman H
    J Clin Invest; 1966 Aug; 45(8):1357-63. PubMed ID: 5926078
    [No Abstract]   [Full Text] [Related]  

  • 20. On the development of glycine transport systems by rat renal cortex.
    Reynolds R; Roth KS; Hwang SM; Segal S
    Biochim Biophys Acta; 1978 Aug; 511(2):274-84. PubMed ID: 678545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.