These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10554248)

  • 1. Survey of the Free and Conjugated Myricetin and Quercetin Content of Red Wines of Different Geographical Origins.
    McDonald MS; Hughes M; Burns J; Lean ME; Matthews D; Crozier A
    J Agric Food Chem; 1998 Feb; 46(2):368-375. PubMed ID: 10554248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Content of the flavonols myricetin, quercetin, and kaempferol in finnish berry wines.
    Vuorinen H; Määtta K; Törrönen R
    J Agric Food Chem; 2000 Jul; 48(7):2675-80. PubMed ID: 11032478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of biogenic amines content in chilean reserve varietal wines.
    Henríquez-Aedo K; Vega M; Prieto-Rodríguez S; Aranda M
    Food Chem Toxicol; 2012 Aug; 50(8):2742-50. PubMed ID: 22640936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of the aromas of Merlot and Cabernet Sauvignon wines using sensory and instrumental analysis.
    Kotseridis Y; Razungles A; Bertrand A; Baumes R
    J Agric Food Chem; 2000 Nov; 48(11):5383-8. PubMed ID: 11087489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine.
    Antalick G; Tempère S; Šuklje K; Blackman JW; Deloire A; de Revel G; Schmidtke LM
    J Agric Food Chem; 2015 Oct; 63(41):9103-11. PubMed ID: 26434979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methoxypyrazine Content of Japanese Red Wines.
    Hashizume K; Umeda N
    Biosci Biotechnol Biochem; 1996 Jan; 60(5):802-5. PubMed ID: 27281141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative determination of free and hydrolytically liberated beta-damascenone in red grapes and wines using a stable isotope dilution assay.
    Kotseridis Y; Baumes RL; Skouroumounis GK
    J Chromatogr A; 1999 Jul; 849(1):245-54. PubMed ID: 10444847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of 80 newly isolated autochthonous yeast strains from the Tikveš region of Macedonia and their impact on the quality of red wines produced from Vranec and Cabernet Sauvignon grape varieties.
    Ilieva F; Kostadinović Veličkovska S; Dimovska V; Mirhosseini H; Spasov H
    Food Chem; 2017 Feb; 216():309-15. PubMed ID: 27596425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemometrics.
    Hu XZ; Liu SQ; Li XH; Wang CX; Ni XL; Liu X; Wang Y; Liu Y; Xu CH
    Sci Rep; 2019 Jun; 9(1):8256. PubMed ID: 31164667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro antibacterial activity of Chilean red wines against Helicobacter pylori.
    Daroch F; Hoeneisen M; González CL; Kawaguchi F; Salgado F; Solar H; García A
    Microbios; 2001; 104(408):79-85. PubMed ID: 11297014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography-olfactometry and gas chromatography-mass spectrometry.
    Gürbüz O; Rouseff JM; Rouseff RL
    J Agric Food Chem; 2006 May; 54(11):3990-6. PubMed ID: 16719525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1,8-Cineole in French Red Wines: Evidence for a Contribution Related to Its Various Origins.
    Poitou X; Thibon C; Darriet P
    J Agric Food Chem; 2017 Jan; 65(2):383-393. PubMed ID: 28060498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring
    Geana EI; Dinca OR; Ionete RE; Artem V; Niculescu VC
    Food Technol Biotechnol; 2015 Mar; 53(1):73-80. PubMed ID: 27904334
    [No Abstract]   [Full Text] [Related]  

  • 14. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas.
    Son HS; Kim KM; van den Berg F; Hwang GS; Park WM; Lee CH; Hong YS
    J Agric Food Chem; 2008 Sep; 56(17):8007-16. PubMed ID: 18707121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Levels of stilbene oligomers and astilbin in French varietal wines and in grapes during noble rot development.
    Landrault N; Larronde F; Delaunay JC; Castagnino C; Vercauteren J; Merillon JM; Gasc F; Cros G; Teissedre PL
    J Agric Food Chem; 2002 Mar; 50(7):2046-52. PubMed ID: 11902955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Chemical and Sensory Profiles between Cabernet Sauvignon and Marselan Dry Red Wines in China.
    Song X; Yang W; Qian X; Zhang X; Ling M; Yang L; Shi Y; Duan C; Lan Y
    Foods; 2023 Mar; 12(5):. PubMed ID: 36900627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic profile and free radical-scavenging activity of Cabernet Sauvignon wines of different geographical origins from the Balkan region.
    Radovanović BC; Radovanović AN; Souquet JM
    J Sci Food Agric; 2010 Nov; 90(14):2455-61. PubMed ID: 20648551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The parentage of a classic wine grape, Cabernet Sauvignon.
    Bowers JE; Meredith CP
    Nat Genet; 1997 May; 16(1):84-7. PubMed ID: 9140400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of aromatic compounds in young red wines from cabernet sauvignon, cabernet franc, and cabernet gernischet varieties in China.
    Zhang M; Xu Q; Duan C; Qu W; Wu Y
    J Food Sci; 2007 Jun; 72(5):C248-52. PubMed ID: 17995710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines.
    Castillo-Muñoz N; Gómez-Alonso S; García-Romero E; Hermosín-Gutiérrez I
    J Agric Food Chem; 2007 Feb; 55(3):992-1002. PubMed ID: 17263504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.