These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10554997)

  • 1. Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test.
    Konishi S; Kawazu M; Uchida I; Kikyo H; Asakura I; Miyashita Y
    Cereb Cortex; 1999; 9(7):745-53. PubMed ID: 10554997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI.
    Konishi S; Nakajima K; Uchida I; Kikyo H; Kameyama M; Miyashita Y
    Brain; 1999 May; 122 ( Pt 5)():981-91. PubMed ID: 10355680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient activation of inferior prefrontal cortex during cognitive set shifting.
    Konishi S; Nakajima K; Uchida I; Kameyama M; Nakahara K; Sekihara K; Miyashita Y
    Nat Neurosci; 1998 May; 1(1):80-4. PubMed ID: 10195114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging.
    Monchi O; Petrides M; Petre V; Worsley K; Dagher A
    J Neurosci; 2001 Oct; 21(19):7733-41. PubMed ID: 11567063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple components of lateral posterior parietal activation associated with cognitive set shifting.
    Asari T; Konishi S; Jimura K; Miyashita Y
    Neuroimage; 2005 Jul; 26(3):694-702. PubMed ID: 15955479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological correlates activated during the Wisconsin Card Sorting Test (WCST).
    Mestrović AH; Palmović M; Bojić M; Treselj B; Nevajda B
    Coll Antropol; 2012 Jun; 36(2):513-20. PubMed ID: 22856238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling the prefrontal network for rule selection by means of a non-verbal variant of the Wisconsin Card Sorting Test.
    Specht K; Lie CH; Shah NJ; Fink GR
    Hum Brain Mapp; 2009 May; 30(5):1734-43. PubMed ID: 18729079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test.
    Lie CH; Specht K; Marshall JC; Fink GR
    Neuroimage; 2006 Apr; 30(3):1038-49. PubMed ID: 16414280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Right frontal event related EEG coherence (ERCoh) differentiates good from bad performers of the Wisconsin Card Sorting Test (WCST).
    Carrillo-de-la-Peña MT; García-Larrea L
    Neurophysiol Clin; 2007; 37(2):63-75. PubMed ID: 17540289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging.
    Smith AB; Taylor E; Brammer M; Rubia K
    Hum Brain Mapp; 2004 Apr; 21(4):247-56. PubMed ID: 15038006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Wisconsin Card Sorting Test and the assessment of frontal function: a validation study with event-related potentials.
    Barceló F; Sanz M; Molina V; Rubia FJ
    Neuropsychologia; 1997 Apr; 35(4):399-408. PubMed ID: 9106269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal parietal cortex activation during working memory in schizophrenia: verbal phonological coding disturbances versus domain-general executive dysfunction.
    Barch DM; Csernansky JG
    Am J Psychiatry; 2007 Jul; 164(7):1090-8. PubMed ID: 17606661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia.
    Tan HY; Choo WC; Fones CS; Chee MW
    Am J Psychiatry; 2005 Oct; 162(10):1849-58. PubMed ID: 16199831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive persistence: Development and validation of a novel measure from the Wisconsin Card Sorting Test.
    Teubner-Rhodes S; Vaden KI; Dubno JR; Eckert MA
    Neuropsychologia; 2017 Jul; 102():95-108. PubMed ID: 28552783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential superior prefrontal activity on initial versus subsequent shifts in naive subjects.
    Konishi S; Morimoto H; Jimura K; Asari T; Chikazoe J; Yamashita K; Hirose S; Miyashita Y
    Neuroimage; 2008 Jun; 41(2):575-80. PubMed ID: 18417365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of an oculomotor delayed response task and the Wisconsin Card Sort Test in schizophrenic patients.
    Park S
    Int J Psychophysiol; 1997 Sep; 27(2):147-51. PubMed ID: 9342645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the prefrontal cortex during the Wisconsin Card Sorting Test as measured by multichannel near-infrared spectroscopy.
    Sumitani S; Tanaka T; Tayoshi S; Ota K; Kameoka N; Ueno S; Ohmori T
    Neuropsychobiology; 2006; 53(2):70-6. PubMed ID: 16511337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Working memory capacity in schizophrenia: a parametric fMRI study.
    Jansma JM; Ramsey NF; van der Wee NJ; Kahn RS
    Schizophr Res; 2004 Jun; 68(2-3):159-71. PubMed ID: 15099600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Madrid card sorting test (MCST): a task switching paradigm to study executive attention with event-related potentials.
    Barceló F
    Brain Res Brain Res Protoc; 2003 Mar; 11(1):27-37. PubMed ID: 12697260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Context-dependent, neural system-specific neurophysiological concomitants of ageing: mapping PET correlates during cognitive activation.
    Esposito G; Kirkby BS; Van Horn JD; Ellmore TM; Berman KF
    Brain; 1999 May; 122 ( Pt 5)():963-79. PubMed ID: 10355679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.