These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 10555067)

  • 21. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures.
    Ranatunga KW
    Biophys J; 1994 May; 66(5):1531-41. PubMed ID: 8061202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy transfer during stress relaxation of contracting frog muscle fibres.
    Mantovani M; Heglund NC; Cavagna GA
    J Physiol; 2001 Dec; 537(Pt 3):923-39. PubMed ID: 11744765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Force generation and temperature-jump and length-jump tension transients in muscle fibers.
    Davis JS; Rodgers ME
    Biophys J; 1995 May; 68(5):2032-40. PubMed ID: 7612845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of troponin C in modulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibres.
    Palmer S; Kentish JC
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):45-60. PubMed ID: 7853225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres.
    McDonald KS; Wolff MR; Moss RL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid activation by photolysis of nitr-5 in skinned fibres of the striated adductor muscle from the scallop.
    Lea TJ; Fenton MJ; Potter JD; Ashley CC
    Biochim Biophys Acta; 1990 May; 1034(2):186-94. PubMed ID: 2112954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles.
    Altringham JD; Johnston IA
    J Physiol; 1982 Dec; 333():421-49. PubMed ID: 7182472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis.
    Stienen GJ; Zaremba R; Elzinga G
    J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):109-22. PubMed ID: 7730976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of 2,3-butanedione monoxime on the contractile activation properties of fast- and slow-twitch rat muscle fibres.
    Fryer MW; Neering IR; Stephenson DG
    J Physiol; 1988 Dec; 407():53-75. PubMed ID: 3256625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Force generation simplified. Insights from laser temperature-jump experiments on contracting muscle fibers.
    Davis JS
    Adv Exp Med Biol; 1998; 453():343-51; discussion 351-2. PubMed ID: 9889846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of inorganic phosphate and arsenate on both passive muscle visco-elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres.
    Mutungi G
    J Muscle Res Cell Motil; 2003; 24(1):65-75. PubMed ID: 12953837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Biphasic changes in isometric tension after a temperature jump in skinned Ca-activated skeletal muscles of the frog].
    Bershitskiĭ SIu; Tsaturian AK
    Biofizika; 1988; 33(1):147-9. PubMed ID: 3370234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers.
    Zhao Y; Kawai M
    Biophys J; 1994 Oct; 67(4):1655-68. PubMed ID: 7819497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5'-triphosphate.
    Goldman YE; Hibberd MG; Trentham DR
    J Physiol; 1984 Sep; 354():577-604. PubMed ID: 6481645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force and power generating mechanism(s) in active muscle as revealed from temperature perturbation studies.
    Ranatunga KW
    J Physiol; 2010 Oct; 588(Pt 19):3657-70. PubMed ID: 20660565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of inorganic phosphate on endothermic force generation in muscle.
    Ranatunga KW
    Proc Biol Sci; 1999 Jul; 266(1426):1381-5. PubMed ID: 10445293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The force-generation process in active muscle is strain sensitive and endothermic: a temperature-perturbation study.
    Ranatunga KW; Offer G
    J Exp Biol; 2017 Dec; 220(Pt 24):4733-4742. PubMed ID: 29084851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic and physical characterization of force generation in muscle: a laser temperature-jump and length-jump study on activated and contracting rigor fibers.
    Davis JS; Harrington WF
    Adv Exp Med Biol; 1993; 332():513-24; discussion 525-6. PubMed ID: 8109364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.