These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10555069)

  • 1. Quantification of total calcium in terminal cisternae of skinned muscle fibers by imaging electron energy-loss spectroscopy.
    Stegmann H; Wepf R; Schröder RR; Fink RH
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):505-15. PubMed ID: 10555069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of low calcium concentrations in cryosectioned cells by parallel-EELS mapping.
    Leapman RD; Hunt JA; Buchanan RA; Andrews SB
    Ultramicroscopy; 1993 Feb; 49(1-4):225-34. PubMed ID: 8475601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological electron energy loss spectroscopy in the field-emission scanning transmission electron microscope.
    Leapman RD; Sun SQ; Hunt JA; Andrews SB
    Scanning Microsc Suppl; 1994; 8():245-58; discussion 258-9. PubMed ID: 7638490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined solution exchange/plunge-freezing device for skinned muscle fibers.
    Stegmann H; Fink RH
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):497-503. PubMed ID: 10555068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron probe X-ray microanalysis of cultured myogenic C2C12 cells with scanning and scanning transmission electron microscopy.
    Tylko G; Karasiński J; Wróblewski R; Roomans GM; Kilarski WM
    Folia Histochem Cytobiol; 2000; 38(2):79-84. PubMed ID: 10833672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributions of calcium in A and I bands of skinned vertebrate muscle fibers stretched to beyond filament overlap.
    Cantino ME; Eichen JG; Daniels SB
    Biophys J; 1998 Aug; 75(2):948-56. PubMed ID: 9675195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative water mapping of cryosectioned cells by electron energy-loss spectroscopy.
    Sun SQ; Shi SL; Hunt JA; Leapman RD
    J Microsc; 1995 Jan; 177(Pt 1):18-30. PubMed ID: 7897645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative scanning transmission electron microscopy of ultrathin cryosections: subcellular organelles in rapidly frozen liver and cerebellar cortex.
    Buchanan RA; Leapman RD; O'Connell MF; Reese TS; Andrews SB
    J Struct Biol; 1993; 110(3):244-55. PubMed ID: 8373705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle.
    Fryer MW; Stephenson DG
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):357-70. PubMed ID: 8782101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium and magnesium contents and volume of the terminal cisternae in caffeine-treated skeletal muscle.
    Yoshioka T; Somlyo AP
    J Cell Biol; 1984 Aug; 99(2):558-68. PubMed ID: 6611338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shrinkage of freeze-dried cryosections of cells: Investigations by EFTEM and cryo-CLEM.
    Casanova G; Nolin F; Wortham L; Ploton D; Banchet V; Michel J
    Micron; 2016 Sep; 88():77-83. PubMed ID: 27428286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of bupivacaine and ropivacaine enantiomers on intracellular Ca2+ regulation in murine skeletal muscle fibers.
    Zink W; Missler G; Sinner B; Martin E; Fink RH; Graf BM
    Anesthesiology; 2005 Apr; 102(4):793-8. PubMed ID: 15791109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elemental distribution in striated muscle and the effects of hypertonicity. Electron probe analysis of cryo sections.
    Somlyo AV; Shuman H; Somlyo AP
    J Cell Biol; 1977 Sep; 74(3):828-57. PubMed ID: 302837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary investigations of a correlation between electron energy loss and morphometric analyses on ultrathin cryosections from normal and neoplastic gastric tissues.
    Wolf B; Bischoff E; Schwinde A
    Virchows Arch A Pathol Anat Histopathol; 1986; 408(6):665-76. PubMed ID: 3085333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine and Ca2+ stimulate mitochondrial oxidative phosphorylation in saponin-skinned human skeletal muscle fibers due to activation of actomyosin ATPase.
    Khuchua Z; Belikova Y; Kuznetsov AV; Gellerich FN; Schild L; Neumann HW; Kunz WS
    Biochim Biophys Acta; 1994 Dec; 1188(3):373-9. PubMed ID: 7803452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A system for acquiring simultaneous electron energy-loss and X-ray spectrum-images.
    Feng J; Somlyo AV; Somlyo AP
    J Microsc; 2004 Jul; 215(Pt 1):92-9. PubMed ID: 15230880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modeling and fluorescence imaging to study the Ca2+ turnover in skinned muscle fibers.
    Uttenweiler D; Weber C; Fink RH
    Biophys J; 1998 Apr; 74(4):1640-53. PubMed ID: 9545029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raised intracellular [Ca2+] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad.
    Lamb GD; Junankar PR; Stephenson DG
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):349-62. PubMed ID: 8847631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution ultrastructural mapping of total calcium: electron spectroscopic imaging/electron energy loss spectroscopy analysis of a physically/chemically processed nerve-muscle preparation.
    Grohovaz F; Bossi M; Pezzati R; Meldolesi J; Tarelli FT
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4799-803. PubMed ID: 8643483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of electron energy-loss spectra from ultrathin-sectioned biological material. II. The application of bio-standards for quantitative analysis.
    Sorber CW; Ketelaars GA; Gelsema ES; Jongkind JF; De Bruijn WC
    J Microsc; 1991 Apr; 162(Pt 1):43-54. PubMed ID: 1870113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.