These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 10555175)
1. Determination of in vivo rat muscle Gd-DTPA relaxivity at 6.3 T. Rozijn TH; van der Sanden BP; Heerschap A; Creyghton JH; Boveé WM MAGMA; 1999 Oct; 9(1-2):65-71. PubMed ID: 10555175 [TBL] [Abstract][Full Text] [Related]
2. Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Donahue KM; Burstein D; Manning WJ; Gray ML Magn Reson Med; 1994 Jul; 32(1):66-76. PubMed ID: 8084239 [TBL] [Abstract][Full Text] [Related]
3. The relaxivity of Gd-EOB-DTPA and Gd-DTPA in liver and kidney of the Wistar rat. Shuter B; Tofts PS; Wang SC; Pope JM Magn Reson Imaging; 1996; 14(3):243-53. PubMed ID: 8725190 [TBL] [Abstract][Full Text] [Related]
5. Intra-individual comparison of different gadolinium-based contrast agents in the quantitative evaluation of C6 glioma with dynamic contrast-enhanced magnetic resonance imaging. Li Y; Liu G; Lou X; Chen Z; Ma L Sci China Life Sci; 2017 Jan; 60(1):11-15. PubMed ID: 28078511 [TBL] [Abstract][Full Text] [Related]
6. Quantitative assessment of Gd-DTPA contrast agent from signal enhancement: an in-vitro study. Mørkenborg J; Pedersen M; Jensen FT; Stødkilde-Jørgensen H; Djurhuus JC; Frøkiaer J Magn Reson Imaging; 2003 Jul; 21(6):637-43. PubMed ID: 12915195 [TBL] [Abstract][Full Text] [Related]
7. A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. Kovar DA; Lewis M; Karczmar GS J Magn Reson Imaging; 1998; 8(5):1126-34. PubMed ID: 9786152 [TBL] [Abstract][Full Text] [Related]
8. Gadolinium-enhanced 7.0 T magnetic resonance imaging assessment of the aqueous inflow in rat eyes in vivo. Li L; Yuan Y; Chen L; Li M; Ji P; Gong J; Zhao Y; Zhang H Exp Eye Res; 2017 Sep; 162():18-26. PubMed ID: 28655605 [TBL] [Abstract][Full Text] [Related]
9. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy. Haar PJ; Broaddus WC; Chen ZJ; Fatouros PP; Gillies GT; Corwin FD Phys Med Biol; 2010 Jun; 55(12):3451-65. PubMed ID: 20508321 [TBL] [Abstract][Full Text] [Related]
10. In vivo measurements of relaxivities in the rat kidney cortex. Pedersen M; Mørkenborg J; Jensen FT; Stødkilde-Jørgensen H; Djurhuus JC; Frokiaer J J Magn Reson Imaging; 2000 Aug; 12(2):289-96. PubMed ID: 10931592 [TBL] [Abstract][Full Text] [Related]
11. Stability and trapping of magnetic resonance imaging contrast agents during high-intensity focused ultrasound ablation therapy. Hijnen NM; Elevelt A; Grüll H Invest Radiol; 2013 Jul; 48(7):517-24. PubMed ID: 23695082 [TBL] [Abstract][Full Text] [Related]
12. Gadodiamide T1 relaxivity in brain tissue in vivo is lower than in saline. Pickup S; Wood AK; Kundel HL Magn Reson Med; 2005 Jan; 53(1):35-40. PubMed ID: 15690500 [TBL] [Abstract][Full Text] [Related]
13. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Pintaske J; Martirosian P; Graf H; Erb G; Lodemann KP; Claussen CD; Schick F Invest Radiol; 2006 Mar; 41(3):213-21. PubMed ID: 16481903 [TBL] [Abstract][Full Text] [Related]
14. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent. Chen Z; Yu D; Liu C; Yang X; Zhang N; Ma C; Song J; Lu Z J Drug Target; 2011 Sep; 19(8):657-65. PubMed ID: 21091273 [TBL] [Abstract][Full Text] [Related]
15. Magnetic resonance imaging-histomorphologic correlation studies on paramagnetic metalloporphyrins in rat models of necrosis. Ni Y; Petré C; Miao Y; Yu J; Cresens E; Adriaens P; Bosmans H; Semmler W; Baert AL; Marchal G Invest Radiol; 1997 Dec; 32(12):770-9. PubMed ID: 9406018 [TBL] [Abstract][Full Text] [Related]
16. Gd(DTPA-BBA) as a contrast agent in magnetic resonance imaging in rats. Sheu RS; Jaw TS; Wang YM; Liu GC; Kuo YT; Chue PY J Formos Med Assoc; 1999 Jan; 98(1):49-55. PubMed ID: 10063274 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the intestinal and hepatic uptake/efflux transport of the magnetic resonance imaging contrast agent gadolinium-ethoxylbenzyl-diethylenetriamine-pentaacetic acid. Jia J; Puls D; Oswald S; Jedlitschky G; Kühn JP; Weitschies W; Hosten N; Siegmund W; Keiser M Invest Radiol; 2014 Feb; 49(2):78-86. PubMed ID: 24056116 [TBL] [Abstract][Full Text] [Related]
18. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Mikawa M; Kato H; Okumura M; Narazaki M; Kanazawa Y; Miwa N; Shinohara H Bioconjug Chem; 2001; 12(4):510-4. PubMed ID: 11459454 [TBL] [Abstract][Full Text] [Related]
19. The effect of a phosphodiester linking group on albumin binding, blood half-life, and relaxivity of intravascular diethylenetriaminepentaacetato aquo gadolinium(III) MRI contrast agents. McMurry TJ; Parmelee DJ; Sajiki H; Scott DM; Ouellet HS; Walovitch RC; Tyeklár Z; Dumas S; Bernard P; Nadler S; Midelfort K; Greenfield M; Troughton J; Lauffer RB J Med Chem; 2002 Aug; 45(16):3465-74. PubMed ID: 12139457 [TBL] [Abstract][Full Text] [Related]
20. Phantom and animal studies of a new hepatobiliary agent for MR imaging: comparison of Gd-DTPA-DeA with Gd-EOB-DTPA. Yoshikawa K; Inoue Y; Akahane M; Shimada M; Itoh S; Seno A; Hayashi S J Magn Reson Imaging; 2003 Aug; 18(2):204-9. PubMed ID: 12884333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]