These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 10555569)

  • 21. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of molecular and mechanical transformations in canine skeletal muscle by chronic neuromuscular stimulation.
    Zhang KM; Wright LD; Hu P; Spratt JA; Wechsler AS; Briggs FN
    J Muscle Res Cell Motil; 1997 Feb; 18(1):81-90. PubMed ID: 9147996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin.
    Beard NA; Wei L; Cheung SN; Kimura T; Varsányi M; Dulhunty AF
    Cell Calcium; 2008 Oct; 44(4):363-73. PubMed ID: 19230141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-linking analysis of the ryanodine receptor and alpha1-dihydropyridine receptor in rabbit skeletal muscle triads.
    Murray BE; Ohlendieck K
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):689-96. PubMed ID: 9182735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-frequency stimulation of fast muscle affects the abundance of Ca(2+)-ATPase but not its oligomeric status.
    Harmon S; Froemming GR; Leisner E; Pette D; Ohlendieck K
    J Appl Physiol (1985); 2001 Jan; 90(1):371-9. PubMed ID: 11133930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development.
    Arai M; Otsu K; MacLennan DH; Periasamy M
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C614-20. PubMed ID: 1372478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin.
    Jones LR; Suzuki YJ; Wang W; Kobayashi YM; Ramesh V; Franzini-Armstrong C; Cleemann L; Morad M
    J Clin Invest; 1998 Apr; 101(7):1385-93. PubMed ID: 9525981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural control of gene expression in skeletal muscle. Calcium-sequestering proteins in developing and chronically stimulated rabbit skeletal muscles.
    Leberer E; Seedorf U; Pette D
    Biochem J; 1986 Oct; 239(2):295-300. PubMed ID: 2880579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sarcolipin regulates the activity of SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase.
    Odermatt A; Becker S; Khanna VK; Kurzydlowski K; Leisner E; Pette D; MacLennan DH
    J Biol Chem; 1998 May; 273(20):12360-9. PubMed ID: 9575189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of junctin causes adaptive changes in cardiac myocyte Ca(2+) signaling.
    Kirchhefer U; Hanske G; Jones LR; Justus I; Kaestner L; Lipp P; Schmitz W; Neumann J
    Cell Calcium; 2006 Feb; 39(2):131-42. PubMed ID: 16289269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular properties of excitation-contraction coupling proteins in infant and adult human heart tissues.
    Jung DH; Lee CJ; Suh CK; You HJ; Kim DH
    Mol Cells; 2005 Aug; 20(1):51-6. PubMed ID: 16258241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sarcoplasmic reticulum proteins in heart failure.
    Lehnart SE; Schillinger W; Pieske B; Prestle J; Just H; Hasenfuss G
    Ann N Y Acad Sci; 1998 Sep; 853():220-30. PubMed ID: 10603950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization study of the ryanodine receptor and of calsequestrin isoforms of mammalian skeletal muscles in relation to fibre types.
    Damiani E; Margreth A
    J Muscle Res Cell Motil; 1994 Apr; 15(2):86-101. PubMed ID: 8051290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of calpain in eccentric contraction-induced proteolysis of Ca
    Kanzaki K; Watanabe D; Kuratani M; Yamada T; Matsunaga S; Wada M
    J Appl Physiol (1985); 2017 Feb; 122(2):396-405. PubMed ID: 27979982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of ion-regulatory membrane proteins of excitation-contraction coupling and relaxation in inherited muscle diseases.
    Froemming GR; Ohlendieck K
    Front Biosci; 2001 Jan; 6():D65-74. PubMed ID: 11145921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of triadin with histidine-rich Ca(2+)-binding protein at the triadic junction in skeletal muscle fibers.
    Sacchetto R; Turcato F; Damiani E; Margreth A
    J Muscle Res Cell Motil; 1999 May; 20(4):403-15. PubMed ID: 10531621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased sensitivity of the ryanodine receptor to halothane-induced oligomerization in malignant hyperthermia-susceptible human skeletal muscle.
    Glover L; Heffron JJ; Ohlendieck K
    J Appl Physiol (1985); 2004 Jan; 96(1):11-8. PubMed ID: 12959958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered stored calcium release in skeletal myotubes deficient of triadin and junctin.
    Wang Y; Li X; Duan H; Fulton TR; Eu JP; Meissner G
    Cell Calcium; 2009 Jan; 45(1):29-37. PubMed ID: 18620751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beta2-agonist administration increases sarcoplasmic reticulum Ca2+-ATPase activity in aged rat skeletal muscle.
    Schertzer JD; Plant DR; Ryall JG; Beitzel F; Stupka N; Lynch GS
    Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E526-33. PubMed ID: 15479951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.