These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 10555573)
1. The pH dependence of intramolecular electron transfer rates in sulfite oxidase at high and low anion concentrations. Pacheco A; Hazzard JT; Tollin G; Enemark JH J Biol Inorg Chem; 1999 Aug; 4(4):390-401. PubMed ID: 10555573 [TBL] [Abstract][Full Text] [Related]
2. Intramolecular electron transfer in sulfite-oxidizing enzymes: elucidating the role of a conserved active site arginine. Emesh S; Rapson TD; Rajapakshe A; Kappler U; Bernhardt PV; Tollin G; Enemark JH Biochemistry; 2009 Mar; 48(10):2156-63. PubMed ID: 19226119 [TBL] [Abstract][Full Text] [Related]
3. Role of conserved tyrosine 343 in intramolecular electron transfer in human sulfite oxidase. Feng C; Wilson HL; Hurley JK; Hazzard JT; Tollin G; Rajagopalan KV; Enemark JH J Biol Chem; 2003 Jan; 278(5):2913-20. PubMed ID: 12424234 [TBL] [Abstract][Full Text] [Related]
4. Effect of solution viscosity on intramolecular electron transfer in sulfite oxidase. Feng C; Kedia RV; Hazzard JT; Hurley JK; Tollin G; Enemark JH Biochemistry; 2002 May; 41(18):5816-21. PubMed ID: 11980485 [TBL] [Abstract][Full Text] [Related]
5. Electron transfer in sulfite oxidase: effects of pH and anions on transient kinetics. Sullivan EP; Hazzard JT; Tollin G; Enemark JH Biochemistry; 1993 Nov; 32(46):12465-70. PubMed ID: 8241137 [TBL] [Abstract][Full Text] [Related]
6. Essential role of conserved arginine 160 in intramolecular electron transfer in human sulfite oxidase. Feng C; Wilson HL; Hurley JK; Hazzard JT; Tollin G; Rajagopalan KV; Enemark JH Biochemistry; 2003 Oct; 42(42):12235-42. PubMed ID: 14567685 [TBL] [Abstract][Full Text] [Related]
7. The pathogenic human sulfite oxidase mutants G473D and A208D are defective in intramolecular electron transfer. Feng C; Wilson HL; Tollin G; Astashkin AV; Hazzard JT; Rajagopalan KV; Enemark JH Biochemistry; 2005 Oct; 44(42):13734-43. PubMed ID: 16229463 [TBL] [Abstract][Full Text] [Related]
8. Pulsed ELDOR spectroscopy of the Mo(V)/Fe(III) state of sulfite oxidase prepared by one-electron reduction with Ti(III) citrate. Codd R; Astashkin AV; Pacheco A; Raitsimring AM; Enemark JH J Biol Inorg Chem; 2002 Mar; 7(3):338-50. PubMed ID: 11935358 [TBL] [Abstract][Full Text] [Related]
9. Probing the role of a conserved salt bridge in the intramolecular electron transfer kinetics of human sulfite oxidase. Johnson-Winters K; Davis AC; Arnold AR; Berry RE; Tollin G; Enemark JH J Biol Inorg Chem; 2013 Aug; 18(6):645-53. PubMed ID: 23779234 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic complexities of sulfite oxidase: An enzyme with multiple domains, subunits, and cofactors. Enemark JH J Inorg Biochem; 2023 Oct; 247():112312. PubMed ID: 37441922 [TBL] [Abstract][Full Text] [Related]
11. An MCD spectroscopic study of the molybdenum active site in sulfite oxidase: insight into the role of coordinated cysteine. Helton ME; Pacheco A; McMaster J; Enemark JH; Kirk ML J Inorg Biochem; 2000 Jul; 80(3-4):227-33. PubMed ID: 11001093 [TBL] [Abstract][Full Text] [Related]
12. Electronic structure studies of oxomolybdenum tetrathiolate complexes: origin of reduction potential differences and relationship to cysteine-molybdenum bonding in sulfite oxidase. McNaughton RL; Tipton AA; Rubie ND; Conry RR; Kirk ML Inorg Chem; 2000 Dec; 39(25):5697-706. PubMed ID: 11151370 [TBL] [Abstract][Full Text] [Related]
13. Intramolecular electron transfer in sulfite-oxidizing enzymes: probing the role of aromatic amino acids. Rajapakshe A; Meyers KT; Berry RE; Tollin G; Enemark JH J Biol Inorg Chem; 2012 Mar; 17(3):345-52. PubMed ID: 22057690 [TBL] [Abstract][Full Text] [Related]
14. Pulsed EPR studies of nonexchangeable protons near the Mo(V) center of sulfite oxidase: direct detection of the alpha-proton of the coordinated cysteinyl residue and structural implications for the active site. Astashkin AV; Raitsimring AM; Feng C; Johnson JL; Rajagopalan KV; Enemark JH J Am Chem Soc; 2002 May; 124(21):6109-18. PubMed ID: 12022845 [TBL] [Abstract][Full Text] [Related]
15. Effects of mutating aromatic surface residues of the heme domain of human sulfite oxidase on its heme midpoint potential, intramolecular electron transfer, and steady-state kinetics. Davis AC; Cornelison MJ; Meyers KT; Rajapakshe A; Berry RE; Tollin G; Enemark JH Dalton Trans; 2013 Mar; 42(9):3043-9. PubMed ID: 22975842 [TBL] [Abstract][Full Text] [Related]
16. The catalytic mechanism for NO production by the mitochondrial enzyme, sulfite oxidase. Mutus B Biochem J; 2019 Jul; 476(13):1955-1956. PubMed ID: 31308158 [TBL] [Abstract][Full Text] [Related]
17. Determination of the distance between the Mo(V) and Fe(III) heme centers of wild type human sulfite oxidase by pulsed EPR spectroscopy. Astashkin AV; Rajapakshe A; Cornelison MJ; Johnson-Winters K; Enemark JH J Phys Chem B; 2012 Feb; 116(6):1942-50. PubMed ID: 22229742 [TBL] [Abstract][Full Text] [Related]
18. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer. Rapson TD; Kappler U; Hanson GR; Bernhardt PV Biochim Biophys Acta; 2011 Jan; 1807(1):108-18. PubMed ID: 20863809 [TBL] [Abstract][Full Text] [Related]