BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 10555783)

  • 1. Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases.
    Tapia R; Peña F; Arias C
    Neurochem Res; 1999 Nov; 24(11):1423-30. PubMed ID: 10555783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein phosphatase inhibitor okadaic acid induces heat shock protein expression and neurodegeneration in rat hippocampus in vivo.
    Arias C; Becerra-García F; Arrieta I; Tapia R
    Exp Neurol; 1998 Oct; 153(2):242-54. PubMed ID: 9784284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Okadaic acid-induced Tau phosphorylation in rat brain: role of NMDA receptor.
    Kamat PK; Rai S; Swarnkar S; Shukla R; Ali S; Najmi AK; Nath C
    Neuroscience; 2013 May; 238():97-113. PubMed ID: 23415789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer's disease.
    Pei JJ; Gong CX; An WL; Winblad B; Cowburn RF; Grundke-Iqbal I; Iqbal K
    Am J Pathol; 2003 Sep; 163(3):845-58. PubMed ID: 12937126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein phosphatase inhibitors induce modification of synapse structure and tau hyperphosphorylation in cultured rat hippocampal neurons.
    Malchiodi-Albedi F; Petrucci TC; Picconi B; Iosi F; Falchi M
    J Neurosci Res; 1997 Jun; 48(5):425-38. PubMed ID: 9185666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional induction of cyclooxygenase-2 gene by okadaic acid inhibition of phosphatase activity in human chondrocytes: co-stimulation of AP-1 and CRE nuclear binding proteins.
    Miller C; Zhang M; He Y; Zhao J; Pelletier JP; Martel-Pelletier J; Di Battista JA
    J Cell Biochem; 1998 Jun; 69(4):392-413. PubMed ID: 9620167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Okadaic acid-induced decrease in the magnitude and efficacy of the Ca2+ signal in pancreatic beta cells and inhibition of insulin secretion.
    Sato Y; Mariot P; Detimary P; Gilon P; Henquin JC
    Br J Pharmacol; 1998 Jan; 123(1):97-105. PubMed ID: 9484859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperphosphorylation of beta-catenin on serine-threonine residues and loss of cell-cell contacts induced by calyculin A and okadaic acid in human epidermal cells.
    Serres M; Grangeasse C; Haftek M; Durocher Y; Duclos B; Schmitt D
    Exp Cell Res; 1997 Feb; 231(1):163-72. PubMed ID: 9056423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential sensitivity of mesencephalic neurons to inhibition of phosphatase 2A.
    Zeevalk GD; Bernard LP; Manzino L; Sonsalla PK
    J Pharmacol Exp Ther; 2001 Sep; 298(3):925-33. PubMed ID: 11504786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of okadaic acid on glucose regulation.
    Louzao MC; Vieytes MR; Botana LM
    Mini Rev Med Chem; 2005 Feb; 5(2):207-15. PubMed ID: 15720290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of protein phosphatases induces IGF-1-blocked neurotrophin-insensitive neuronal apoptosis.
    Fernández-Sánchez MT; García-Rodríguez A; Díaz-Trelles R; Novelli A
    FEBS Lett; 1996 Nov; 398(1):106-12. PubMed ID: 8946962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor.
    Dounay AB; Forsyth CJ
    Curr Med Chem; 2002 Nov; 9(22):1939-80. PubMed ID: 12369865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of okadaic acid-induced hyperphosphorylation of cytoskeletal proteins by heat preconditioning and its possible underlying mechanisms.
    Xu YF; Zhang YJ; Zhang AH; Zhang Q; Wu T; Wang JZ
    Cell Stress Chaperones; 2004; 9(3):304-12. PubMed ID: 15544168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response.
    Gehringer MM
    FEBS Lett; 2004 Jan; 557(1-3):1-8. PubMed ID: 14741332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitors of serine/threonine phosphoprotein phosphatases alter circadian properties in Gonyaulax polyedra.
    Comolli J; Taylor W; Rehman J; Hastings JW
    Plant Physiol; 1996 May; 111(1):285-91. PubMed ID: 8685268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific regulation of Alzheimer-like tau phosphorylation in living neurons.
    Burack MA; Halpain S
    Neuroscience; 1996 May; 72(1):167-84. PubMed ID: 8730715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of calyculin A and okadaic acid on acetylcholine release and subcellular distribution in rat hippocampal formation.
    Issa AM; Gauthier S; Collier B
    J Neurochem; 1999 Jan; 72(1):166-73. PubMed ID: 9886067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dephosphorylation of glial fibrillary acidic protein (GFAP) in the immature rat hippocampus is catalyzed mainly by a type 1 protein phosphatase.
    Vinadé L; Rodnight R
    Brain Res; 1996 Sep; 732(1-2):195-200. PubMed ID: 8891284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356.
    Bennecib M; Gong CX; Grundke-Iqbal I; Iqbal K
    FEBS Lett; 2001 Feb; 490(1-2):15-22. PubMed ID: 11172803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the voltage-gated sodium current in rat striatal neurons by DARPP-32, an inhibitor of protein phosphatase.
    Schiffmann SN; Desdouits F; Menu R; Greengard P; Vincent JD; Vanderhaeghen JJ; Girault JA
    Eur J Neurosci; 1998 Apr; 10(4):1312-20. PubMed ID: 9749785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.