BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 10555955)

  • 21. Difference in molecular structure of rod and cone visual pigments studied by Fourier transform infrared spectroscopy.
    Imai H; Hirano T; Kandori H; Terakita A; Shichida Y
    Biochemistry; 2001 Mar; 40(9):2879-86. PubMed ID: 11258899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-dependent expression of pinopsin gene in chicken pineal gland.
    Takanaka Y; Okano T; Iigo M; Fukada Y
    J Neurochem; 1998 Mar; 70(3):908-13. PubMed ID: 9489709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the 9-methyl group of retinal in cone visual pigments.
    Das J; Crouch RK; Ma JX; Oprian DD; Kono M
    Biochemistry; 2004 May; 43(18):5532-8. PubMed ID: 15122919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II.
    Heck M; Schädel SA; Maretzki D; Bartl FJ; Ritter E; Palczewski K; Hofmann KP
    J Biol Chem; 2003 Jan; 278(5):3162-9. PubMed ID: 12427735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments.
    Kojima K; Imamoto Y; Maeda R; Yamashita T; Shichida Y
    J Biol Chem; 2014 Feb; 289(8):5061-73. PubMed ID: 24375403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanosecond laser photolysis of iodopsin, a chicken red-sensitive cone visual pigment.
    Shichida Y; Okada T; Kandori H; Fukada Y; Yoshizawa T
    Biochemistry; 1993 Oct; 32(40):10832-8. PubMed ID: 8399233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opsin-G11-mediated signaling pathway for photic entrainment of the chicken pineal circadian clock.
    Kasahara T; Okano T; Haga T; Fukada Y
    J Neurosci; 2002 Sep; 22(17):7321-5. PubMed ID: 12196552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single amino acid residue as a functional determinant of rod and cone visual pigments.
    Imai H; Kojima D; Oura T; Tachibanaki S; Terakita A; Shichida Y
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2322-6. PubMed ID: 9122193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments.
    Sato K; Yamashita T; Ohuchi H; Shichida Y
    Biochemistry; 2011 Dec; 50(48):10484-90. PubMed ID: 22066464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells.
    Imai H; Imamoto Y; Yoshizawa T; Shichida Y
    Biochemistry; 1995 Aug; 34(33):10525-31. PubMed ID: 7654707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pinopsin mRNA levels are significantly elevated in the pineal glands of chickens carrying a null mutation in guanylate cyclase-1.
    Semple-Rowland SL; Tepedino M; Coleman JE
    Brain Res Mol Brain Res; 2001 Dec; 97(1):51-8. PubMed ID: 11744162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments.
    Okano T; Kojima D; Fukada Y; Shichida Y; Yoshizawa T
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5932-6. PubMed ID: 1385866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiencies of activation of transducin by cone and rod visual pigments.
    Imamoto Y; Seki I; Yamashita T; Shichida Y
    Biochemistry; 2013 Apr; 52(17):3010-8. PubMed ID: 23570417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues.
    Fukada Y; Okano T; Shichida Y; Yoshizawa T; Trehan A; Mead D; Denny M; Asato AE; Liu RS
    Biochemistry; 1990 Mar; 29(12):3133-40. PubMed ID: 2140051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study.
    Zvyaga TA; Fahmy K; Siebert F; Sakmar TP
    Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin.
    Fukada Y; Shichida Y; Yoshizawa T; Ito M; Kodama A; Tsukida K
    Biochemistry; 1984 Nov; 23(24):5826-32. PubMed ID: 6098298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA; Fahmy K; Sakmar TP
    Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differentiation of pinopsin-immunoreactive cells in the developing quail pineal organ: an in-vivo and in-vitro immunohistochemical study.
    Yamao M; Araki M; Okano T; Fukada Y; Oishi T
    Cell Tissue Res; 1999 Jun; 296(3):667-71. PubMed ID: 10370152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 10,20-Methanorhodopsins: (7E,9E,13E)-10,20-methanorhodopsin and (7E,9Z,13Z)-10,20-methanorhodopsin. 11-cis-locked rhodopsin analog pigments with unusual thermal and photo-stability.
    de Grip WJ; van Oostrum J; Bovee-Geurts PH; van der Steen R; van Amsterdam LJ; Groesbeek M; Lugtenburg J
    Eur J Biochem; 1990 Jul; 191(1):211-20. PubMed ID: 2143135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of Transducin by Bistable Pigment Parapinopsin in the Pineal Organ of Lower Vertebrates.
    Kawano-Yamashita E; Koyanagi M; Wada S; Tsukamoto H; Nagata T; Terakita A
    PLoS One; 2015; 10(10):e0141280. PubMed ID: 26492337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.