These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10556240)

  • 1. Conserved structural features and sequence patterns in the GroES fold family.
    Taneja B; Mande SC
    Protein Eng; 1999 Oct; 12(10):815-8. PubMed ID: 10556240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and sequence comparisons of quinone oxidoreductase, zeta-crystallin, and glucose and alcohol dehydrogenases.
    Edwards KJ; Barton JD; Rossjohn J; Thorn JM; Taylor GL; Ollis DL
    Arch Biochem Biophys; 1996 Apr; 328(1):173-83. PubMed ID: 8638928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins.
    Persson B; Zigler JS; Jörnvall H
    Eur J Biochem; 1994 Nov; 226(1):15-22. PubMed ID: 7957243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of conserved residue patterns in small beta-barrel proteins.
    Qamra R; Taneja B; Mande SC
    Protein Eng; 2002 Dec; 15(12):967-77. PubMed ID: 12601136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a GroES (CPN10)-related sequence motif in the GroEL (CPN60) chaperonins.
    Gupta RS
    Biochem Mol Biol Int; 1994 Jun; 33(3):591-5. PubMed ID: 7951076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the structure of GroES and its interaction with GroEL.
    Valencia A; Hubbard TJ; Muga A; Bañuelos S; Llorca O; Carrascosa JL; Valpuesta JM
    Proteins; 1995 Jul; 22(3):199-209. PubMed ID: 7479694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein.
    Tang YC; Chang HC; Roeben A; Wischnewski D; Wischnewski N; Kerner MJ; Hartl FU; Hayer-Hartl M
    Cell; 2006 Jun; 125(5):903-14. PubMed ID: 16751100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liver class-I alcohol dehydrogenase isozyme relationships and constant patterns in a variable basic structure. Distinctions from characterization of an ethanol dehydrogenase in cobra, Naja naja.
    Shafqat J; Hjelmqvist L; Jörnvall H
    Eur J Biochem; 1996 Mar; 236(2):571-8. PubMed ID: 8612631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyranose oxidase identified as a member of the GMC oxidoreductase family.
    Albrecht M; Lengauer T
    Bioinformatics; 2003 Jul; 19(10):1216-20. PubMed ID: 12835264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach.
    Chaudhuri TK; Gupta P
    Cell Stress Chaperones; 2005; 10(1):24-36. PubMed ID: 15832945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of chaperonin 60 and chaperonin 10 from the anaerobic thermophile Thermoanaerobacter brockii.
    Truscott KN; Høj PB; Scopes RK
    Eur J Biochem; 1994 Jun; 222(2):277-84. PubMed ID: 7912671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity.
    Shimamura T; Koike-Takeshita A; Yokoyama K; Masui R; Murai N; Yoshida M; Taguchi H; Iwata S
    Structure; 2004 Aug; 12(8):1471-80. PubMed ID: 15296740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural stability of oligomeric chaperonin 10: the role of two beta-strands at the N and C termini in structural stabilization.
    Sakane I; Ikeda M; Matsumoto C; Higurashi T; Inoue K; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2004 Dec; 344(4):1123-33. PubMed ID: 15544816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding.
    Hayer-Hartl M; Bracher A; Hartl FU
    Trends Biochem Sci; 2016 Jan; 41(1):62-76. PubMed ID: 26422689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution.
    Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW
    J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural stability of covalently linked GroES heptamer: advantages in the formation of oligomeric structure.
    Sakane I; Hongo K; Motojima F; Murayama S; Mizobata T; Kawata Y
    J Mol Biol; 2007 Apr; 367(4):1171-85. PubMed ID: 17303164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex.
    Xu Z; Horwich AL; Sigler PB
    Nature; 1997 Aug; 388(6644):741-50. PubMed ID: 9285585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein folding assisted by the GroEL/GroES chaperonin system.
    Martin J
    Biochemistry (Mosc); 1998 Apr; 63(4):374-81. PubMed ID: 9556520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 1.7 A crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus reveals a novel internal conserved sequence repeat.
    Oubrie A; Rozeboom HJ; Kalk KH; Duine JA; Dijkstra BW
    J Mol Biol; 1999 Jun; 289(2):319-33. PubMed ID: 10366508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.