BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 10557009)

  • 1. Endocrine changes in patients with acute organophosphate poisoning.
    Güven M; Bayram F; Unlühizarci K; Keleştimur F
    Hum Exp Toxicol; 1999 Oct; 18(10):598-601. PubMed ID: 10557009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atypical organophosphate poisoning and a successful case of prolonged intubation in a low-resource newly developed intensive care unit in rural Zambia.
    Bowell L; Williams MT
    BMJ Case Rep; 2024 Feb; 17(2):. PubMed ID: 38383128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ENDOCRINE DISTURBANCES INDUCED BY LOW-DOSE ORGANOPHOSPHATE EXPOSURE IN MALE WISTAR RATS.
    Cobilinschi C; Tincu RC; Băetu AE; Deaconu CO; Totan A; Rusu A; Neagu PT; Grințescu IM
    Acta Endocrinol (Buchar); 2021; 17(2):177-185. PubMed ID: 34925565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute NETosis from organophosphate poisoning.
    Fan BE; Teo GFA; Lim KGE; Wong SW; Lai YW; Kuperan P; Wong SL
    Am J Hematol; 2023 Dec; ():. PubMed ID: 38069486
    [No Abstract]   [Full Text] [Related]  

  • 5. A Case of Organophosphate Poisoning Inducing Parkinsonism which was Effectively Treated by Antiparkinson Drugs.
    Yanagawa Y; Takeuchi I; Noda K
    J Emerg Trauma Shock; 2023; 16(3):137-138. PubMed ID: 38025500
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular and Biochemical Evidence of the Toxic Effects of Terbuthylazine and Malathion in Zebrafish.
    Khatib I; Horyn O; Bodnar O; Lushchak O; Rychter P; Falfushynska H
    Animals (Basel); 2023 Mar; 13(6):. PubMed ID: 36978570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of Preterm Birth and Exposure to Endocrine Disrupting Chemicals.
    Kolan AS; Hall JM
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxic-Induced Nonthyroidal Illness Syndrome Induced by Acute Low-Dose Pesticides Exposure-Preliminary In Vivo Study.
    Cobilinschi C; Țincu R; Ungureanu R; Dumitru I; Băetu A; Isac S; Cobilinschi CO; Grințescu IM; Mirea L
    Toxics; 2022 Aug; 10(9):. PubMed ID: 36136476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of the Diurnal Cortisol Hormone Pattern by Pesticide Use in a Longitudinal Study of Farmers in Thailand.
    Kongtip P; Nankongnab N; Kallayanatham N; Pengpumkiat S; Gore R; Pundee R; Konthonbut P; Woskie SR
    Ann Work Expo Health; 2021 May; 65(4):406-417. PubMed ID: 33604604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention.
    Yilmaz B; Terekeci H; Sandal S; Kelestimur F
    Rev Endocr Metab Disord; 2020 Mar; 21(1):127-147. PubMed ID: 31792807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species and male reproductive hormones.
    Darbandi M; Darbandi S; Agarwal A; Sengupta P; Durairajanayagam D; Henkel R; Sadeghi MR
    Reprod Biol Endocrinol; 2018 Sep; 16(1):87. PubMed ID: 30205828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of activity of hypothalamo-pituitary-gonadal axis in postmenopausal women suffering from severe acute illness.
    Raj MN; Suresh V; Mukka A; Reddy A; Sachan A; Mohan A; Vengamma B; Rao PV
    Indian J Med Res; 2016 Jan; 143(1):66-71. PubMed ID: 26997016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Associations of maternal organophosphate pesticide exposure and PON1 activity with birth outcomes in SAWASDEE birth cohort, Thailand.
    Naksen W; Prapamontol T; Mangklabruks A; Chantara S; Thavornyutikarn P; Srinual N; Panuwet P; Ryan PB; Riederer AM; Barr DB
    Environ Res; 2015 Oct; 142():288-96. PubMed ID: 26186137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of acute organophosphate poisoning on pituitary target gland hormones at admission, discharge and three months after poisoning: A hospital based pilot study.
    Dutta P; Kamath SS; Bhalla A; Shah VN; Srinivasan A; Gupta P; Singh S
    Indian J Endocrinol Metab; 2015; 19(1):116-23. PubMed ID: 25593838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose-dependent effect of deltamethrin in testis, liver, and kidney of wistar rats.
    Sharma P; Singh R; Jan M
    Toxicol Int; 2014 May; 21(2):131-9. PubMed ID: 25253921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does thyroid disruption contribute to the developmental neurotoxicity of chlorpyrifos?
    Slotkin TA; Cooper EM; Stapleton HM; Seidler FJ
    Environ Toxicol Pharmacol; 2013 Sep; 36(2):284-287. PubMed ID: 23686008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters.
    Meeker JD; Stapleton HM
    Environ Health Perspect; 2010 Mar; 118(3):318-23. PubMed ID: 20194068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of oral tetrachlorvinphos fly control (Equitrol) administration in horses: physiological and behavioural findings.
    Berger J; Valdez S; Puschner B; Leutenegger CM; Gardner IA; Madigan JE
    Vet Res Commun; 2008 Jan; 32(1):75-92. PubMed ID: 17522960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pesticide exposure alters follicle-stimulating hormone levels in Mexican agricultural workers.
    Recio R; Ocampo-Gómez G; Morán-Martínez J; Borja-Aburto V; López-Cervante M; Uribe M; Torres-Sánchez L; Cebrián ME
    Environ Health Perspect; 2005 Sep; 113(9):1160-3. PubMed ID: 16140621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression.
    Aldridge JE; Levin ED; Seidler FJ; Slotkin TA
    Environ Health Perspect; 2005 May; 113(5):527-31. PubMed ID: 15866758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.