These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10557248)

  • 41. Increase in carbohydrate content and variation in microbiome are related to the drought tolerance of Codonopsis pilosula.
    Liang Y; Wei G; Ning K; Li M; Zhang G; Luo L; Zhao G; Wei J; Liu Y; Dong L; Chen S
    Plant Physiol Biochem; 2021 Aug; 165():19-35. PubMed ID: 34034158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frost tolerance in excised leaves of the common bugle (Ajuga reptans L.) correlates positively with the concentrations of raffinose family oligosaccharides (RFOs).
    Peters S; Keller F
    Plant Cell Environ; 2009 Aug; 32(8):1099-107. PubMed ID: 19422612
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage.
    Nishizawa-Yokoi A; Yabuta Y; Shigeoka S
    Plant Signal Behav; 2008 Nov; 3(11):1016-8. PubMed ID: 19704439
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stachyose Synthesis in Source Leaf Tissues of the CAM Plant Xerosicyos danguyi H. Humb.
    Madore MA; Mitchell DE; Boyd CM
    Plant Physiol; 1988 Jul; 87(3):588-91. PubMed ID: 16666190
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Porous Graphitic Carbon Liquid Chromatography-Mass Spectrometry Analysis of Drought Stress-Responsive Raffinose Family Oligosaccharides in Plant Tissues.
    Jorge TF; Florêncio MH; António C
    Methods Mol Biol; 2017; 1631():279-293. PubMed ID: 28735404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula.
    Vandecasteele C; Teulat-Merah B; Morère-Le Paven MC; Leprince O; Ly Vu B; Viau L; Ledroit L; Pelletier S; Payet N; Satour P; Lebras C; Gallardo K; Huguet T; Limami AM; Prosperi JM; Buitink J
    Plant Cell Environ; 2011 Sep; 34(9):1473-87. PubMed ID: 21554325
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Classification of distinct seed carbohydrate profiles in soybean.
    Hagely KB; Palmquist D; Bilyeu KD
    J Agric Food Chem; 2013 Feb; 61(5):1105-11. PubMed ID: 23317449
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery.
    Sengupta D; Guha A; Reddy AR
    J Photochem Photobiol B; 2013 Oct; 127():170-81. PubMed ID: 24050991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L.
    Rangani J; Panda A; Patel M; Parida AK
    J Photochem Photobiol B; 2018 Dec; 189():214-233. PubMed ID: 30396132
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.).
    Monti A; Brugnoli E; Scartazza A; Amaducci MT
    J Exp Bot; 2006; 57(6):1253-62. PubMed ID: 16467409
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sodium replacement of potassium in physiological processes of olive trees (var. Barnea) as affected by drought.
    Erel R; Ben-Gal A; Dag A; Schwartz A; Yermiyahu U
    Tree Physiol; 2014 Oct; 34(10):1102-17. PubMed ID: 25281842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited.
    Flexas J; Medrano H
    Ann Bot; 2002 Feb; 89(2):183-9. PubMed ID: 12099349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effect of exogenous α-naphthaleneacetic acid on carbon metabolism of soybean under drought stress at flowering stage].
    Xing XH; Xui ZJ; Qi YJ; Wang XJ; Sun DL; Bian NF; Wang X
    Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1215-1224. PubMed ID: 29726231
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under drought or waterlogging].
    Fan X; Jiang D; Dai T; Jing Q; Cao W
    Ying Yong Sheng Tai Xue Bao; 2005 Oct; 16(10):1883-8. PubMed ID: 16422508
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differences in Sugar Accumulation and Mobilization between Sequential and Non-Sequential Senescence Wheat Cultivars under Natural and Drought Conditions.
    Shi H; Wang B; Yang P; Li Y; Miao F
    PLoS One; 2016; 11(11):e0166155. PubMed ID: 27814393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-wide identification of genes involved in raffinose metabolism in Maize.
    Zhou ML; Zhang Q; Zhou M; Sun ZM; Zhu XM; Shao JR; Tang YX; Wu YM
    Glycobiology; 2012 Dec; 22(12):1775-85. PubMed ID: 22879458
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Purification and characterization of stachyose synthase from lentil (Lens culinaris) seeds: galactopinitol and stachyose synthesis.
    Hoch G; Peterbauer T; Richter A
    Arch Biochem Biophys; 1999 Jun; 366(1):75-81. PubMed ID: 10334866
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress.
    Arndt SK; Clifford SC; Wanek W; Jones HG; Popp M
    Tree Physiol; 2001 Jul; 21(11):705-15. PubMed ID: 11470656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation.
    Salvi P; Saxena SC; Petla BP; Kamble NU; Kaur H; Verma P; Rao V; Ghosh S; Majee M
    Sci Rep; 2016 Oct; 6():35088. PubMed ID: 27725707
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A reliable and rapid method for soluble sugars and RFO analysis in chickpea using HPAEC-PAD and its comparison with HPLC-RI.
    Gangola MP; Jaiswal S; Khedikar YP; Chibbar RN
    Food Chem; 2014 Jul; 154():127-33. PubMed ID: 24518324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.