These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10558887)

  • 1. A two-step computer-assisted method for deriving steady-state rate equations.
    Fromm SJ; Fromm HJ
    Biochem Biophys Res Commun; 1999 Nov; 265(2):448-52. PubMed ID: 10558887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of kinetic parameters of enzyme-catalyzed reactions with a minimum number of velocity measurements.
    Alberty RA
    J Theor Biol; 2008 Sep; 254(1):156-63. PubMed ID: 18582902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic approach to compact steady-state kinetic equations for enzymic reactions.
    Malygin EG; Hattman S
    J Theor Biol; 2006 Oct; 242(3):627-33. PubMed ID: 16697416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer program for the kinetic equations of enzyme reactions. The case in which more than one enzyme species is present at the onset of the reaction.
    Varón R; Havsteen BH; García M; García-Canóvas F; Tudela J
    Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):91-7. PubMed ID: 1883344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of the transient phase and steady state of open multicyclic enzyme cascades.
    Varón R; Havsteen BH; Valero E; Molina-Alarcón M; García-Cánovas F; García-Moreno M
    Acta Biochim Pol; 2005; 52(4):765-80. PubMed ID: 16086076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optimized algorithm for flux estimation from isotopomer distribution in glucose metabolites.
    Selivanov VA; Puigjaner J; Sillero A; Centelles JJ; Ramos-Montoya A; Lee PW; Cascante M
    Bioinformatics; 2004 Dec; 20(18):3387-97. PubMed ID: 15256408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinlsq: a program for fitting kinetics data with numerically integrated rate equations and its application to the analysis of slow, tight-binding inhibition data.
    Gutheil WG; Kettner CA; Bachovchin WW
    Anal Biochem; 1994 Nov; 223(1):13-20. PubMed ID: 7695087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcomputer tools for steady-state enzyme kinetics.
    Myers D; Palmer G
    Comput Appl Biosci; 1985; 1(2):105-10. PubMed ID: 3880330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of enzyme inhibition by substrate depletion.
    Cortese JD; Vidal JC
    Acta Physiol Lat Am; 1981; 31(3):161-71. PubMed ID: 7187587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interpretation of multiple-step transient-state kinetic isotope effects.
    Maniscalco SJ; Tally JF; Fisher HF
    Arch Biochem Biophys; 2004 May; 425(2):165-72. PubMed ID: 15111124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient computation of the first passage time distribution of the generalized master equation by steady-state relaxation.
    Shalloway D; Faradjian AK
    J Chem Phys; 2006 Feb; 124(5):054112. PubMed ID: 16468856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalized numerical approach to rapid-equilibrium enzyme kinetics: application to 17beta-HSD.
    Kuzmic P
    Mol Cell Endocrinol; 2006 Mar; 248(1-2):172-81. PubMed ID: 16368183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase.
    Kuzmic P
    Anal Biochem; 1996 Jun; 237(2):260-73. PubMed ID: 8660575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple computer program with statistical tests for the analysis of enzyme kinetics.
    Brooks SP
    Biotechniques; 1992 Dec; 13(6):906-11. PubMed ID: 1476744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The computerized derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid-equilibrium assumption.
    Ishikawa H; Maeda T; Hikita H; Miyatake K
    Biochem J; 1988 Apr; 251(1):175-81. PubMed ID: 3390151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitting neurological protein aggregation kinetic data via a 2-step, minimal/"Ockham's razor" model: the Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth.
    Morris AM; Watzky MA; Agar JN; Finke RG
    Biochemistry; 2008 Feb; 47(8):2413-27. PubMed ID: 18247636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enzyme mechanism language for the mathematical modeling of metabolic pathways.
    Yang CR; Shapiro BE; Mjolsness ED; Hatfield GW
    Bioinformatics; 2005 Mar; 21(6):774-80. PubMed ID: 15509612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter.
    Tang L; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 May; 42(18):5378-86. PubMed ID: 12731879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.