BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 10559214)

  • 1. Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica HBP1.
    Suske WA; van Berkel WJ; Kohler HP
    J Biol Chem; 1999 Nov; 274(47):33355-65. PubMed ID: 10559214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring the reductive and oxidative half-reactions of a flavin-dependent monooxygenase using stopped-flow spectrophotometry.
    Romero E; Robinson R; Sobrado P
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1.
    Tinberg CE; Song WJ; Izzo V; Lippard SJ
    Biochemistry; 2011 Mar; 50(11):1788-98. PubMed ID: 21366224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase.
    Johnson SB; Li H; Valentino H; Sobrado P
    Biochemistry; 2024 Jun; 63(11):1445-1459. PubMed ID: 38779817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the arene-oxidizing intermediate in ToMOH as a diiron(III) species.
    Murray LJ; Naik SG; Ortillo DO; García-Serres R; Lee JK; Huynh BH; Lippard SJ
    J Am Chem Soc; 2007 Nov; 129(46):14500-10. PubMed ID: 17967027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Pseudomonas aeruginosa PAO1 metallo flavoprotein d-2-hydroxyglutarate dehydrogenase requires Zn
    Quaye JA; Gadda G
    J Biol Chem; 2023 Mar; 299(3):103008. PubMed ID: 36775127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand bound structure of a 6-hydroxynicotinic acid 3-monooxygenase provides mechanistic insights.
    Turlington ZR; Vaz Ferreira de Macedo S; Perry K; Belsky SL; Faust JA; Snider MJ; Hicks KA
    Arch Biochem Biophys; 2024 Feb; 752():109859. PubMed ID: 38104959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic Characterization and Identification of Key Active Site Residues of the L-Aspartate N-Hydroxylase, CreE.
    Johnson SB; Valentino H; Sobrado P
    Chembiochem; 2024 May; ():e202400350. PubMed ID: 38775737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic characterization of a flavin-dependent monooxygenase from the insect food crop pest, Zonocerus variegatus.
    Johnson SB; Paasch K; Shepard S; Sobrado P
    Arch Biochem Biophys; 2024 Apr; 754():109949. PubMed ID: 38430968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Spectrophotometric Method for Toluene-4-Monooxygenase Activity.
    Baskaran B; Gill TM; Furst AL
    Chemistry; 2023 Apr; 29(19):e202203322. PubMed ID: 36593585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-Selective Catalysis Enabled Synthesis of Azaphilone Natural Products.
    Wang Y; Torma KJ; Pyser JB; Zimmerman PM; Narayan ARH
    ACS Cent Sci; 2024 Mar; 10(3):708-716. PubMed ID: 38559303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1.
    Suske WA; Held M; Schmid A; Fleischmann T; Wubbolts MG; Kohler HP
    J Biol Chem; 1997 Sep; 272(39):24257-65. PubMed ID: 9305879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis.
    Toplak M; Saleem-Batcha R; Piel J; Teufel R
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):26960-26970. PubMed ID: 34652045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into Mobile Genetic Elements of the Biocide-Degrading Bacterium
    Carraro N; Sentchilo V; Polák L; Bertelli C; van der Meer JR
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32806781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic pathway and cell adaptation mechanisms revealed through genomic, proteomic and transcription analysis of a Sphingomonas haloaromaticamans strain degrading ortho-phenylphenol.
    Perruchon C; Vasileiadis S; Rousidou C; Papadopoulou ES; Tanou G; Samiotaki M; Garagounis C; Molassiotis A; Papadopoulou KK; Karpouzas DG
    Sci Rep; 2017 Jul; 7(1):6449. PubMed ID: 28743883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of Doubly para-Substituted Hydroxychlorobiphenyls by Bacterial Biphenyl Dioxygenases.
    Pham TT; Sondossi M; Sylvestre M
    Appl Environ Microbiol; 2015 Jul; 81(14):4860-72. PubMed ID: 25956777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of the Apo and FAD-bound forms of 2-hydroxybiphenyl 3-monooxygenase (HbpA) locate activity hotspots identified by using directed evolution.
    Jensen CN; Mielke T; Farrugia JE; Frank A; Man H; Hart S; Turkenburg JP; Grogan G
    Chembiochem; 2015 Apr; 16(6):968-76. PubMed ID: 25737306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase.
    Kantz A; Gassner GT
    Biochemistry; 2011 Feb; 50(4):523-32. PubMed ID: 21166448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of 2,2'- and 3,3'-dihydroxybiphenyl by the biphenyl catabolic pathway of Comamonas testosteroni B-356.
    Sondossi M; Barriault D; Sylvestre M
    Appl Environ Microbiol; 2004 Jan; 70(1):174-81. PubMed ID: 14711640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.