These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 10559247)
1. Magnesium insertion by magnesium chelatase in the biosynthesis of zinc bacteriochlorophyll a in an aerobic acidophilic bacterium Acidiphilium rubrum. Masuda T; Inoue K; Masuda M; Nagayama M; Tamaki A; Ohta H; Shimada H; Takamiya K J Biol Chem; 1999 Nov; 274(47):33594-600. PubMed ID: 10559247 [TBL] [Abstract][Full Text] [Related]
2. Heterologous expression of the Rhodobacter capsulatus BchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. Willows RD; Beale SI J Biol Chem; 1998 Dec; 273(51):34206-13. PubMed ID: 9852082 [TBL] [Abstract][Full Text] [Related]
3. A BchD (magnesium chelatase) mutant of rhodobacter sphaeroides synthesizes zinc bacteriochlorophyll through novel zinc-containing intermediates. Jaschke PR; Hardjasa A; Digby EL; Hunter CN; Beatty JT J Biol Chem; 2011 Jun; 286(23):20313-22. PubMed ID: 21502322 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. Willows RD; Lake V; Roberts TH; Beale SI J Bacteriol; 2003 Jun; 185(11):3249-58. PubMed ID: 12754222 [TBL] [Abstract][Full Text] [Related]
5. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Hansson A; Willows RD; Roberts TH; Hansson M Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13944-9. PubMed ID: 12357035 [TBL] [Abstract][Full Text] [Related]
6. Kinetic analyses of the magnesium chelatase provide insights into the mechanism, structure, and formation of the complex. Sawicki A; Willows RD J Biol Chem; 2008 Nov; 283(46):31294-302. PubMed ID: 18790730 [TBL] [Abstract][Full Text] [Related]
7. Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Willows RD; Gibson LC; Kanangara CG; Hunter CN; von Wettstein D Eur J Biochem; 1996 Jan; 235(1-2):438-43. PubMed ID: 8631364 [TBL] [Abstract][Full Text] [Related]
8. Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex. Gibson LC; Jensen PE; Hunter CN Biochem J; 1999 Jan; 337 ( Pt 2)(Pt 2):243-51. PubMed ID: 9882621 [TBL] [Abstract][Full Text] [Related]
9. BchJ and BchM interact in a 1 : 1 ratio with the magnesium chelatase BchH subunit of Rhodobacter capsulatus. Sawicki A; Willows RD FEBS J; 2010 Nov; 277(22):4709-21. PubMed ID: 20955518 [TBL] [Abstract][Full Text] [Related]
10. Characterization of three homologs of the large subunit of the magnesium chelatase from Chlorobaculum tepidum and interaction with the magnesium protoporphyrin IX methyltransferase. Johnson ET; Schmidt-Dannert C J Biol Chem; 2008 Oct; 283(41):27776-27784. PubMed ID: 18693239 [TBL] [Abstract][Full Text] [Related]
11. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Gibson LC; Willows RD; Kannangara CG; von Wettstein D; Hunter CN Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1941-4. PubMed ID: 7892204 [TBL] [Abstract][Full Text] [Related]
12. The photosystem of Rhodobacter sphaeroides assembles with zinc bacteriochlorophyll in a bchD (magnesium chelatase) mutant. Jaschke PR; Beatty JT Biochemistry; 2007 Oct; 46(43):12491-500. PubMed ID: 17910480 [TBL] [Abstract][Full Text] [Related]
13. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. Fodje MN; Hansson A; Hansson M; Olsen JG; Gough S; Willows RD; Al-Karadaghi S J Mol Biol; 2001 Aug; 311(1):111-22. PubMed ID: 11469861 [TBL] [Abstract][Full Text] [Related]
14. RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. Willett J; Smart JL; Bauer CE J Bacteriol; 2007 Nov; 189(21):7765-73. PubMed ID: 17616588 [TBL] [Abstract][Full Text] [Related]
15. Catalytic turnover triggers exchange of subunits of the magnesium chelatase AAA+ motor unit. Lundqvist J; Braumann I; Kurowska M; Müller AH; Hansson M J Biol Chem; 2013 Aug; 288(33):24012-9. PubMed ID: 23836887 [TBL] [Abstract][Full Text] [Related]
16. Expression of the chlI, chlD, and chlH genes from the Cyanobacterium synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. Jensen PE; Gibson LC; Henningsen KW; Hunter CN J Biol Chem; 1996 Jul; 271(28):16662-7. PubMed ID: 8663186 [TBL] [Abstract][Full Text] [Related]
17. Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D, and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. Petersen BL; Jensen PE; Gibson LC; Stummann BM; Hunter CN; Henningsen KW J Bacteriol; 1998 Feb; 180(3):699-704. PubMed ID: 9457877 [TBL] [Abstract][Full Text] [Related]
18. Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Kannangara CG; Vothknecht UC; Hansson M; von Wettstein D Mol Gen Genet; 1997 Mar; 254(1):85-92. PubMed ID: 9108294 [TBL] [Abstract][Full Text] [Related]
19. Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Papenbrock J; Gräfe S; Kruse E; Hänel F; Grimm B Plant J; 1997 Nov; 12(5):981-90. PubMed ID: 9418040 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of chlorophylls from protoporphyrin IX. Willows RD Nat Prod Rep; 2003 Jun; 20(3):327-41. PubMed ID: 12828371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]