BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10559288)

  • 1. Expression of the pseudorabies virus latency-associated transcript gene during productive infection of cultured cells.
    Jin L; Scherba G
    J Virol; 1999 Dec; 73(12):9781-8. PubMed ID: 10559288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the latency-associated transcript/UL1-3.5 gene cluster promoter complex of pseudorabies virus.
    Cheung AK; Smith TA
    Arch Virol; 1999; 144(2):381-91. PubMed ID: 10470261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the pseudorabies virus promoter required for latency-associated transcript gene expression in the natural host.
    Jin L; Schnitzlein WM; Scherba G
    J Virol; 2000 Jul; 74(14):6333-8. PubMed ID: 10864643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of regulatory functions for the region located upstream from the latency-associated transcript (LAT) promoter of pseudorabies virus in cultured cells.
    Taharaguchi S; Kobayashi T; Yoshino S; Ono E
    Vet Microbiol; 2002 Mar; 85(3):197-208. PubMed ID: 11852187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The BamHI J fragment (0.706 to 0.737 map units) of pseudorabies virus is transcriptionally active during viral replication.
    Cheung AK
    J Virol; 1990 Mar; 64(3):977-83. PubMed ID: 2154623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudorabies virus infected porcine epithelial cell line generates a diverse set of host microRNAs and a special cluster of viral microRNAs.
    Wu YQ; Chen DJ; He HB; Chen DS; Chen LL; Chen HC; Liu ZF
    PLoS One; 2012; 7(1):e30988. PubMed ID: 22292087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 2.5-kilobase deletion containing a cluster of nine microRNAs in the latency-associated-transcript locus of the pseudorabies virus affects the host response of porcine trigeminal ganglia during established latency.
    Mahjoub N; Dhorne-Pollet S; Fuchs W; Endale Ahanda ML; Lange E; Klupp B; Arya A; Loveland JE; Lefevre F; Mettenleiter TC; Giuffra E
    J Virol; 2015 Jan; 89(1):428-42. PubMed ID: 25320324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic studies exposing the splicing events involved in herpes simplex virus type 1 latency-associated transcript production during lytic and latent infection.
    Alvira MR; Goins WF; Cohen JB; Glorioso JC
    J Virol; 1999 May; 73(5):3866-76. PubMed ID: 10196281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The full-length microRNA cluster in the intron of large latency transcript is associated with the virulence of pseudorabies virus.
    Wang X; Zhang MM; Yan K; Tang Q; Wu YQ; He WB; Chen HC; Liu ZF
    Virology; 2018 Jul; 520():59-66. PubMed ID: 29777914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A major portion of the latent pseudorabies virus genome is transcribed in trigeminal ganglia of pigs.
    Priola SA; Gustafson DP; Wagner EK; Stevens JG
    J Virol; 1990 Oct; 64(10):4755-60. PubMed ID: 1697908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of pseudorabies virus transcripts in trigeminal ganglia of latently infected swine.
    Cheung AK
    J Virol; 1989 Jul; 63(7):2908-13. PubMed ID: 2470921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections.
    Chen X; Schmidt MC; Goins WF; Glorioso JC
    J Virol; 1995 Dec; 69(12):7899-908. PubMed ID: 7494302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a pseudorabies virus that is defective in the early protein 0 and latency genes.
    Cheung AK; Fang J; Wesley RD
    Am J Vet Res; 1994 Dec; 55(12):1710-6. PubMed ID: 7887515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential sites of virus latency associated with indigenous pseudorabies viruses in feral swine.
    Romero CH; Meade PN; Homer BL; Shultz JE; Lollis G
    J Wildl Dis; 2003 Jul; 39(3):567-75. PubMed ID: 14567217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and splicing of the latency-associated transcripts of herpes simplex virus type 1 in neuronal and non-neuronal cell lines.
    Mador N; Panet A; Latchman D; Steiner I
    J Biochem; 1995 Jun; 117(6):1288-97. PubMed ID: 7490273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latency characteristics of an EPO and LLT mutant of pseudorabies virus.
    Cheung AK
    J Vet Diagn Invest; 1996 Jan; 8(1):112-5. PubMed ID: 9026066
    [No Abstract]   [Full Text] [Related]  

  • 17. The activity of the pseudorabies virus latency-associated transcript promoter is dependent on its genomic location in herpes simplex virus recombinants as well as on the type of cell infected.
    Huang CJ; Rice MK; Devi-Rao GB; Wagner EK
    J Virol; 1994 Mar; 68(3):1972-6. PubMed ID: 8107257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Analysis of a Frontal miRNA Cluster Located in the Large Latency Transcript of Pseudorabies Virus.
    Hoffmann W; Lipińska AD; Bieńkowska-Szewczyk K
    Viruses; 2022 May; 14(6):. PubMed ID: 35746619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of pseudorabies virus DNA and RNA in trigeminal ganglia and tonsil tissues of latently infected swine.
    Cheung AK
    Am J Vet Res; 1995 Jan; 56(1):45-50. PubMed ID: 7535023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic amplification of latent pseudorabies virus nucleic acid sequences.
    Lokensgard JR; Thawley DG; Molitor TW
    J Virol Methods; 1991 Sep; 34(1):45-55. PubMed ID: 1659580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.