These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 10559395)
21. Multiple axon guidance cues establish the olfactory topographic map: how do these cues interact? St John JA; Clarris HJ; Key B Int J Dev Biol; 2002; 46(4):639-47. PubMed ID: 12141452 [TBL] [Abstract][Full Text] [Related]
22. Age-related changes in p2 odorant receptor mapping in the olfactory bulb. Costanzo RM; Kobayashi M Chem Senses; 2010 Jun; 35(5):417-26. PubMed ID: 20231263 [TBL] [Abstract][Full Text] [Related]
23. Specificity of glomerular targeting by olfactory sensory axons. Treloar HB; Feinstein P; Mombaerts P; Greer CA J Neurosci; 2002 Apr; 22(7):2469-77. PubMed ID: 11923411 [TBL] [Abstract][Full Text] [Related]
24. Brain targeting and glomerulus formation of two olfactory neuron populations expressing related receptor types. Conzelmann S; Malun D; Breer H; Strotmann J Eur J Neurosci; 2001 Nov; 14(10):1623-32. PubMed ID: 11860457 [TBL] [Abstract][Full Text] [Related]
25. Lactosamine differentially affects olfactory sensory neuron projections to the olfactory bulb. Schwarting GA; Henion TR Dev Neurobiol; 2007 Oct; 67(12):1627-40. PubMed ID: 17567839 [TBL] [Abstract][Full Text] [Related]
26. Cell surface carbohydrates and glomerular targeting of olfactory sensory neuron axons in the mouse. Lipscomb BW; Treloar HB; Klenoff J; Greer CA J Comp Neurol; 2003 Dec; 467(1):22-31. PubMed ID: 14574677 [TBL] [Abstract][Full Text] [Related]
27. The carbohydrate CT1 is expressed in topographically fixed glomeruli in the mouse olfactory bulb. Lineburg KE; Amaya D; Ekberg JA; Chehrehasa F; Mackay-Sim A; Martin PT; Key B; St John JA Mol Cell Neurosci; 2011 Sep; 48(1):9-19. PubMed ID: 21699983 [TBL] [Abstract][Full Text] [Related]
28. The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Fuss SH; Omura M; Mombaerts P Eur J Neurosci; 2005 Nov; 22(10):2649-54. PubMed ID: 16307607 [TBL] [Abstract][Full Text] [Related]
29. Sorting and convergence of primary olfactory axons are independent of the olfactory bulb. St John JA; Clarris HJ; McKeown S; Royal S; Key B J Comp Neurol; 2003 Sep; 464(2):131-40. PubMed ID: 12898607 [TBL] [Abstract][Full Text] [Related]
30. Response of olfactory axons to loss of synaptic targets in the adult mouse. Ardiles Y; de la Puente R; Toledo R; Isgor C; Guthrie K Exp Neurol; 2007 Oct; 207(2):275-88. PubMed ID: 17674970 [TBL] [Abstract][Full Text] [Related]
31. Dynamic spatiotemporal expression patterns of neurocan and phosphacan indicate diverse roles in the developing and adult mouse olfactory system. Clarris HJ; Rauch U; Key B J Comp Neurol; 2000 Jul; 423(1):99-111. PubMed ID: 10861539 [TBL] [Abstract][Full Text] [Related]
32. Glycoconjugates are stage- and position-specific cell surface molecules in the developing olfactory system, 2: Unique carbohydrate antigens are topographic markers for selective projection patterns of olfactory axons. Schwarting GA; Deutsch G; Gattey DM; Crandall JE J Neurobiol; 1992 Mar; 23(2):130-42. PubMed ID: 1527523 [TBL] [Abstract][Full Text] [Related]
33. Transient pattern of exuberant projections of olfactory axons during development in the rat. Santacana M; Heredia M; Valverde F Brain Res Dev Brain Res; 1992 Dec; 70(2):213-22. PubMed ID: 1477955 [TBL] [Abstract][Full Text] [Related]
34. The central pathway of primary olfactory axons is abnormal in mice lacking the N-CAM-180 isoform. Treloar H; Tomasiewicz H; Magnuson T; Key B J Neurobiol; 1997 Jun; 32(7):643-58. PubMed ID: 9183743 [TBL] [Abstract][Full Text] [Related]
35. Theoretical consideration of olfactory axon projection with an activity-dependent neural network model. Tozaki H; Tanaka S; Hirata T Mol Cell Neurosci; 2004 Aug; 26(4):503-17. PubMed ID: 15276153 [TBL] [Abstract][Full Text] [Related]
36. Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. Nazareth L; Lineburg KE; Chuah MI; Tello Velasquez J; Chehrehasa F; St John JA; Ekberg JA J Comp Neurol; 2015 Feb; 523(3):479-94. PubMed ID: 25312022 [TBL] [Abstract][Full Text] [Related]
37. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target. Taku AA; Marcaccio CL; Ye W; Krause GJ; Raper JA Development; 2016 Jan; 143(1):123-32. PubMed ID: 26732841 [TBL] [Abstract][Full Text] [Related]
38. Recovery of glomerular morphology in the olfactory bulb of young mice after disruption caused by continuous odorant exposure. Monjaraz-Fuentes F; Millán-Adalco D; Palomero-Rivero M; Hudson R; Drucker-Colín R Brain Res; 2017 Sep; 1670():6-13. PubMed ID: 28583862 [TBL] [Abstract][Full Text] [Related]
39. Olfactory discrimination largely persists in mice with defects in odorant receptor expression and axon guidance. Knott TK; Madany PA; Faden AA; Xu M; Strotmann J; Henion TR; Schwarting GA Neural Dev; 2012 Jul; 7():17. PubMed ID: 22559903 [TBL] [Abstract][Full Text] [Related]
40. Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons. Nguyen-Ba-Charvet KT; Di Meglio T; Fouquet C; Chédotal A J Neurosci; 2008 Apr; 28(16):4244-9. PubMed ID: 18417704 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]