BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10559432)

  • 1. Progressive unilateral damage of the entorhinal cortex enhances synaptic efficacy of the crossed entorhinal afferent to dentate granule cells.
    Ramirez JJ; Bulsara K; Moore SC; Ruch K; Abrams W
    J Neurosci; 1999 Nov; 19(22):RC42. PubMed ID: 10559432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progressive entorhinal cortex lesions accelerate hippocampal sprouting and spare spatial memory in rats.
    Ramirez JJ; McQuilkin M; Carrigan T; MacDonald K; Kelley MS
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15512-7. PubMed ID: 8986843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lesion-induced sprouting promotes neurophysiological integration of septal and entorhinal inputs to granule cells in the dentate gyrus of rats.
    De Niear MA; Smith GR; Robinson ML; Moses-Hampton MK; Lakhmani PG; Upright NA; Krause EL; Ramirez JJ
    Neurobiol Learn Mem; 2023 Feb; 198():107723. PubMed ID: 36621561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional effects of lesion-induced plasticity: long term potentiation in formal and lesion-induced temporodentate connections.
    Wilson RC; Levy WB; Steward O
    Brain Res; 1979 Oct; 176(1):65-78. PubMed ID: 487184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.
    Scharfman HE; Goodman JH; Du F; Schwarcz R
    J Neurophysiol; 1998 Dec; 80(6):3031-46. PubMed ID: 9862904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural characterization of the synapses of the crossed temporodentate pathway in rats.
    Davis L; Vinsant SL; Steward O
    J Comp Neurol; 1988 Jan; 267(2):190-202. PubMed ID: 3343396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lesion-induced synapse reorganization in the hippocampus of cats: sprouting of entorhinal, commissural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways.
    Steward O
    Hippocampus; 1992 Jul; 2(3):247-68. PubMed ID: 1284974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix metalloproteinase inhibition alters functional and structural correlates of deafferentation-induced sprouting in the dentate gyrus.
    Reeves TM; Prins ML; Zhu J; Povlishock JT; Phillips LL
    J Neurosci; 2003 Nov; 23(32):10182-9. PubMed ID: 14614076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sprouting of crossed entorhinodentate fibers after a unilateral entorhinal lesion: anterograde tracing of fiber reorganization with Phaseolus vulgaris-leucoagglutinin (PHAL).
    Deller T; Frotscher M; Nitsch R
    J Comp Neurol; 1996 Jan; 365(1):42-55. PubMed ID: 8821440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced but delayed axonal sprouting of the commissural/associational pathway following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    J Comp Neurol; 1995 Jan; 351(3):453-64. PubMed ID: 7535807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic sprouting in the rat fascia dentata after entorhinal lesion is not linked to early changes in neurotrophin messenger RNA expression.
    Förster E; Naumann T; Deller T; Straube A; Nitsch R; Frotscher M
    Neuroscience; 1997 Oct; 80(3):731-9. PubMed ID: 9276489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilateral organization of parallel and serial pathways in the dentate gyrus demonstrated by current-source density analysis in the rat.
    Golarai G; Sutula TP
    J Neurophysiol; 1996 Jan; 75(1):329-42. PubMed ID: 8822561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of axonal sprouting in functional reorganization after CNS injury: lessons from the hippocampal formation.
    Ramirez JJ
    Restor Neurol Neurosci; 2001; 19(3-4):237-62. PubMed ID: 12082224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The process of reinnervation in the dentate gyrus of adult rats: an ultrastructural study of changes in presynaptic terminals as a result of sprouting.
    Steward O; Vinsant SL; Davis L
    J Comp Neurol; 1988 Jan; 267(2):203-10. PubMed ID: 3343397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of commissural sprouting in the mouse and rat fascia dentata after entorhinal cortex lesion.
    Del Turco D; Woods AG; Gebhardt C; Phinney AL; Jucker M; Frotscher M; Deller T
    Hippocampus; 2003; 13(6):685-99. PubMed ID: 12962314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long lasting functional alterations in the rat dentate gyrus following entorhinal cortex lesion: a current source density analysis.
    Clusmann H; Nitsch R; Heinemann U
    Neuroscience; 1994 Aug; 61(4):805-15. PubMed ID: 7838379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereological analysis of the reorganization of the dentate gyrus following entorhinal cortex lesion in mice.
    Phinney AL; Calhoun ME; Woods AG; Deller T; Jucker M
    Eur J Neurosci; 2004 Apr; 19(7):1731-40. PubMed ID: 15078547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of afferent fiber lamination in the infrapyramidal blade of the rat dentate gyrus.
    Tamamaki N
    J Comp Neurol; 1999 Aug; 411(2):257-66. PubMed ID: 10404251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous synaptogenesis in the deafferented dentate gyrus does not exclude synapse formation by embryonic entorhinal transplants.
    Field PM; Zhou CF; Li Y; Raisman G
    Brain Res; 1997 Mar; 751(2):352-5. PubMed ID: 9099828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiology of the entorhinal and perirhinal projections to the hippocampus studied by current source density analysis.
    Canning KJ; Wu K; Peloquin P; Kloosterman F; Leung LS
    Ann N Y Acad Sci; 2000 Jun; 911():55-72. PubMed ID: 10911867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.