BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10559768)

  • 21. [Effects of laser fragmentation of the lens mass on ocular tissues in experimental animals].
    Svirin AV; Kolesnikov DO; Volobueva TM; Abdul' Karim Khasan
    Vestn Oftalmol; 1991; 107(5):60-3. PubMed ID: 1763458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local fundus response to blue (LED and laser) and infrared (LED and laser) sources.
    Dawson W; Nakanishi-Ueda T; Armstrong D; Reitze D; Samuelson D; Hope M; Fukuda S; Matsuishi M; Ozawa T; Ueda T; Koide R
    Exp Eye Res; 2001 Jul; 73(1):137-47. PubMed ID: 11428871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low power microwave radiation inhibits the proliferation of rabbit lens epithelial cells by upregulating P27Kip1 expression.
    Yao K; Wang KJ; Sun ZH; Tan J; Xu W; Zhu LJ; Lu DQ
    Mol Vis; 2004 Feb; 10():138-43. PubMed ID: 14990889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of white light and UV-A on the green autofluorescence of the rabbit lens in vivo.
    Van Vreeswijk H; Boets EP; Van Best JA
    Exp Eye Res; 1993 Mar; 56(3):349-54. PubMed ID: 8472790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells.
    Lixia S; Yao K; Kaijun W; Deqiang L; Huajun H; Xiangwei G; Baohong W; Wei Z; Jianling L; Wei W
    Mutat Res; 2006 Dec; 602(1-2):135-42. PubMed ID: 17011595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased sensitivity of the non-human primate eye to microwave radiation following ophthalmic drug pretreatment.
    Kues HA; Monahan JC; D'Anna SA; McLeod DS; Lutty GA; Koslov S
    Bioelectromagnetics; 1992; 13(5):379-93. PubMed ID: 1445419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress.
    Nicolas Nicolaz C; Zhadobov M; Desmots F; Sauleau R; Thouroude D; Michel D; Le Drean Y
    Cell Biol Toxicol; 2009 Oct; 25(5):471-8. PubMed ID: 18685816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of non-mode-locked ultraviolet laser radiation (334 nm) on the retina.
    Schmidt RE; Zuclich JA
    Aviat Space Environ Med; 1984 Feb; 55(2):132-5. PubMed ID: 6696705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES.
    Zuclich JA; Lund DJ; Stuck BE
    Health Phys; 2007 Jan; 92(1):15-23. PubMed ID: 17164595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz.
    Chalfin S; D'Andrea JA; Comeau PD; Belt ME; Hatcher DJ
    Health Phys; 2002 Jul; 83(1):83-90. PubMed ID: 12075687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effects of low-intensity infrared laser irradiation on the eye (an experimental study)].
    Prokof'eva GL; Kravchenko EV; Mozherenkov VP; Sergushev SG; Balarev AIu
    Vestn Oftalmol; 1996; 112(1):31-2. PubMed ID: 8659066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous Exposure Using 532 and 860 nm lasers for visible lesion thresholds in the rhesus retina.
    Roach W; Thomas R; Buffington G; Polhamus G; Notabartolo J; DiCarlo C; Stockton K; Stolarski D; Schuster K; Carothers V; Rockwell B; Cain C
    Health Phys; 2006 Mar; 90(3):241-9. PubMed ID: 16505621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lens growth and protein density in the rat lens after in vivo exposure to ultraviolet radiation.
    Michael R; Brismar H
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):402-8. PubMed ID: 11157874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lack of behavioral effects in non-human primates after exposure to ultrawideband electromagnetic radiation in the microwave frequency range.
    Sherry CJ; Blick DW; Walters TJ; Brown GC; Murphy MR
    Radiat Res; 1995 Jul; 143(1):93-7. PubMed ID: 7597150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells.
    Beneduci A
    Cell Biochem Biophys; 2009; 55(1):25-32. PubMed ID: 19536459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximum tolerable dose for avoidance of cataract after repeated exposure to ultraviolet radiation in rats.
    Dong X; Löfgren S; Ayala M; Söderberg PG
    Exp Eye Res; 2007 Jan; 84(1):200-8. PubMed ID: 17094964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Ultrastructural change of rabbit lens epithelial cells induced by low power level microwave radiation].
    Ye J; Ya K; Wu R
    Zhonghua Yan Ke Za Zhi; 2001 Jan; 37(1):56-8. PubMed ID: 11864393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of two different UVA doses on the rabbit cornea and lens.
    Cejka C; Pláteník J; Buchal R; Guryca V; Sirc J; Vejrazka M; Crkovská J; Ardan T; Michálek J; Brůnová B; Cejková J
    Photochem Photobiol; 2009; 85(3):794-800. PubMed ID: 19076313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microwave exposure of neuronal cells in vitro: Study of apoptosis.
    Joubert V; Leveque P; Rametti A; Collin A; Bourthoumieu S; Yardin C
    Int J Radiat Biol; 2006 Apr; 82(4):267-75. PubMed ID: 16690594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of microwave radiation on the eye: the occupational health perspective.
    Cutz A
    Lens Eye Toxic Res; 1989; 6(1-2):379-86. PubMed ID: 2488031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.