These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 10559924)

  • 1. Phosphatidylinositol-3-OH kinases are Rab5 effectors.
    Christoforidis S; Miaczynska M; Ashman K; Wilm M; Zhao L; Yip SC; Waterfield MD; Backer JM; Zerial M
    Nat Cell Biol; 1999 Aug; 1(4):249-52. PubMed ID: 10559924
    [No Abstract]   [Full Text] [Related]  

  • 2. Stochastic activation and bistability in a Rab GTPase regulatory network.
    Bezeljak U; Loya H; Kaczmarek B; Saunders TE; Loose M
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6540-6549. PubMed ID: 32161136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion.
    Simonsen A; Lippé R; Christoforidis S; Gaullier JM; Brech A; Callaghan J; Toh BH; Murphy C; Zerial M; Stenmark H
    Nature; 1998 Jul; 394(6692):494-8. PubMed ID: 9697774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rab conversion as a mechanism of progression from early to late endosomes.
    Rink J; Ghigo E; Kalaidzidis Y; Zerial M
    Cell; 2005 Sep; 122(5):735-49. PubMed ID: 16143105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the switch in early-to-late endosome transition.
    Poteryaev D; Datta S; Ackema K; Zerial M; Spang A
    Cell; 2010 Apr; 141(3):497-508. PubMed ID: 20434987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanisms of vesicle budding and fusion.
    Bonifacino JS; Glick BS
    Cell; 2004 Jan; 116(2):153-66. PubMed ID: 14744428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome.
    Murray JT; Panaretou C; Stenmark H; Miaczynska M; Backer JM
    Traffic; 2002 Jun; 3(6):416-27. PubMed ID: 12010460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes.
    Simonsen A; Tooze SA
    J Cell Biol; 2009 Sep; 186(6):773-82. PubMed ID: 19797076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rabs and their effectors: achieving specificity in membrane traffic.
    Grosshans BL; Ortiz D; Novick P
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):11821-7. PubMed ID: 16882731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors.
    Jordens I; Fernandez-Borja M; Marsman M; Dusseljee S; Janssen L; Calafat J; Janssen H; Wubbolts R; Neefjes J
    Curr Biol; 2001 Oct; 11(21):1680-5. PubMed ID: 11696325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin.
    Rapiteanu R; Davis LJ; Williamson JC; Timms RT; Paul Luzio J; Lehner PJ
    Traffic; 2016 Aug; 17(8):940-58. PubMed ID: 27126989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion.
    Liu K; Jian Y; Sun X; Yang C; Gao Z; Zhang Z; Liu X; Li Y; Xu J; Jing Y; Mitani S; He S; Yang C
    J Cell Biol; 2016 Jan; 212(2):181-98. PubMed ID: 26783301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex.
    Zhong Y; Wang QJ; Li X; Yan Y; Backer JM; Chait BT; Heintz N; Yue Z
    Nat Cell Biol; 2009 Apr; 11(4):468-76. PubMed ID: 19270693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rab proteins as membrane organizers.
    Zerial M; McBride H
    Nat Rev Mol Cell Biol; 2001 Feb; 2(2):107-17. PubMed ID: 11252952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dissection of PI3Kβ synergistic activation by receptor tyrosine kinases, GβGγ, and Rho-family GTPases.
    Duewell BR; Wilson NE; Bailey GM; Peabody SE; Hansen SD
    Elife; 2024 May; 12():. PubMed ID: 38713746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endolysosomal trafficking controls yolk granule biogenesis in vitellogenic Drosophila oocytes.
    Yu Y; Chen D; Farmer SM; Xu S; Rios B; Solbach A; Ye X; Ye L; Zhang S
    PLoS Genet; 2024 Feb; 20(2):e1011152. PubMed ID: 38315726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IqgC is a potent regulator of macropinocytosis in the presence of NF1 and its loading to macropinosomes is dependent on RasG.
    Putar D; Čizmar A; Chao X; Šimić M; Šoštar M; Ćutić T; Mijanović L; Smolko A; Tu H; Cosson P; Weber I; Cai H; Filić V
    Open Biol; 2024 Jan; 14(1):230372. PubMed ID: 38263885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4
    Park JS; Perl A
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor-mediated internalization promotes increased endosome size and number in a RAB4- and RAB5-dependent manner.
    Naslavsky N; Caplan S
    Eur J Cell Biol; 2023 Sep; 102(3):151339. PubMed ID: 37423034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogen vacuole membrane contact sites - close encounters of the fifth kind.
    Vormittag S; Ende RJ; Derré I; Hilbi H
    Microlife; 2023; 4():uqad018. PubMed ID: 37223745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.