These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 10560926)
41. Learning associations between places and visual cues without learning to navigate: neither fornix nor entorhinal cortex is required. Gaffan EA; Bannerman DM; Healey AN Hippocampus; 2003; 13(4):445-60. PubMed ID: 12836914 [TBL] [Abstract][Full Text] [Related]
42. Rats' use of geometric, featural and orientation cues to locate a hidden goal. Batty ER; Hoban L; Spetch ML; Dickson CT Behav Processes; 2009 Nov; 82(3):327-34. PubMed ID: 19683037 [TBL] [Abstract][Full Text] [Related]
43. The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Gilbert PE; Kesner RP Behav Brain Res; 2006 Apr; 169(1):142-9. PubMed ID: 16455144 [TBL] [Abstract][Full Text] [Related]
44. Patterns of hippocampal cell loss based on subregional lesions of the hippocampus. Jerman TS; Kesner RP; Lee I; Berman RF Brain Res; 2005 Dec; 1065(1-2):1-7. PubMed ID: 16307731 [TBL] [Abstract][Full Text] [Related]
45. Effect of neonatal dentate gyrus lesion on allothetic and idiothetic navigation in rats. Czéh B; Stuchlik A; Wesierska M; Cimadevilla JM; Pokorný J; Seress L; Bures J Neurobiol Learn Mem; 2001 Mar; 75(2):190-213. PubMed ID: 11222060 [TBL] [Abstract][Full Text] [Related]
46. The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. Goodrich-Hunsaker NJ; Hunsaker MR; Kesner RP Behav Neurosci; 2008 Feb; 122(1):16-26. PubMed ID: 18298245 [TBL] [Abstract][Full Text] [Related]
47. Competitive Hebbian learning and the hippocampal place cell system: modeling the interaction of visual and path integration cues. Guazzelli A; Bota M; Arbib MA Hippocampus; 2001; 11(3):216-39. PubMed ID: 11769306 [TBL] [Abstract][Full Text] [Related]
48. Analysis of theta power in hippocampal EEG during bar pressing and running behavior in rats during distinct behavioral contexts. Wyble BP; Hyman JM; Rossi CA; Hasselmo ME Hippocampus; 2004; 14(5):662-74. PubMed ID: 15301442 [TBL] [Abstract][Full Text] [Related]
49. Dose-dependent reductions in spatial learning and synaptic function in the dentate gyrus of adult rats following developmental thyroid hormone insufficiency. Gilbert ME; Sui L Brain Res; 2006 Jan; 1069(1):10-22. PubMed ID: 16406011 [TBL] [Abstract][Full Text] [Related]
50. Behavioral and neurochemical effects of acute putrescine depletion by difluoromethylornithine in rats. Gupta N; Zhang H; Liu P Neuroscience; 2009 Jul; 161(3):691-706. PubMed ID: 19348875 [TBL] [Abstract][Full Text] [Related]
51. Path integration and lesions within the head direction cell circuit: comparison between the roles of the anterodorsal thalamus and dorsal tegmental nucleus. Frohardt RJ; Bassett JP; Taube JS Behav Neurosci; 2006 Feb; 120(1):135-49. PubMed ID: 16492124 [TBL] [Abstract][Full Text] [Related]
52. A video demonstration of preserved piloting by scent tracking but impaired dead reckoning after fimbria-fornix lesions in the rat. Whishaw IQ; Gorny BP J Vis Exp; 2009 Apr; (26):. PubMed ID: 19398947 [TBL] [Abstract][Full Text] [Related]
53. NMDA lesions of Ammon's horn and the dentate gyrus disrupt the direct and temporally paced homing displayed by rats exploring a novel environment: evidence for a role of the hippocampus in dead reckoning. Wallace DG; Whishaw IQ Eur J Neurosci; 2003 Aug; 18(3):513-23. PubMed ID: 12911747 [TBL] [Abstract][Full Text] [Related]
54. Vestibular information is required for dead reckoning in the rat. Wallace DG; Hines DJ; Pellis SM; Whishaw IQ J Neurosci; 2002 Nov; 22(22):10009-17. PubMed ID: 12427858 [TBL] [Abstract][Full Text] [Related]
55. Open field motor patterns and object marking, but not object sniffing, are altered by ibotenate lesions of the hippocampus. Harley CW; Martin GM Neurobiol Learn Mem; 1999 Nov; 72(3):202-14. PubMed ID: 10536098 [TBL] [Abstract][Full Text] [Related]
56. Impaired recognition of the goal location during spatial navigation in rats with hippocampal lesions. Hollup SA; Kjelstrup KG; Hoff J; Moser MB; Moser EI J Neurosci; 2001 Jun; 21(12):4505-13. PubMed ID: 11404438 [TBL] [Abstract][Full Text] [Related]
57. Navigating with fingers and feet: analysis of human (Homo sapiens) and rat (Rattus norvegicus) movement organization during nonvisual spatial tasks. Wallace DG; Köppen JR; Jones JL; Winter SS; Wagner SJ J Comp Psychol; 2010 Nov; 124(4):381-94. PubMed ID: 20836594 [TBL] [Abstract][Full Text] [Related]
58. Visual orientation and navigation in nocturnal arthropods. Warrant E; Dacke M Brain Behav Evol; 2010; 75(3):156-73. PubMed ID: 20733292 [TBL] [Abstract][Full Text] [Related]
59. Evidence for extrahippocampal involvement in place learning and hippocampal involvement in path integration. Whishaw IQ; Jarrard LE Hippocampus; 1996; 6(5):513-24. PubMed ID: 8953304 [TBL] [Abstract][Full Text] [Related]
60. Head direction cells in rats with hippocampal or overlying neocortical lesions: evidence for impaired angular path integration. Golob EJ; Taube JS J Neurosci; 1999 Aug; 19(16):7198-211. PubMed ID: 10436073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]