These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10561386)

  • 1. Impaired reaching and grasping after focal inactivation of globus pallidus pars interna in the monkey.
    Wenger KK; Musch KL; Mink JW
    J Neurophysiol; 1999 Nov; 82(5):2049-60. PubMed ID: 10561386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement.
    Mink JW; Thach WT
    J Neurophysiol; 1991 Feb; 65(2):330-51. PubMed ID: 2016644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing basal ganglia motor functions through reversible inactivations in the posterior internal globus pallidus.
    Desmurget M; Turner RS
    J Neurophysiol; 2008 Mar; 99(3):1057-76. PubMed ID: 18077663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations.
    Mason CR; Miller LE; Baker JF; Houk JC
    J Neurophysiol; 1998 Feb; 79(2):537-54. PubMed ID: 9463420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the control of arm position, movement, and thalamic discharge during local inactivation in the globus pallidus of the monkey.
    Inase M; Buford JA; Anderson ME
    J Neurophysiol; 1996 Mar; 75(3):1087-1104. PubMed ID: 8867120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor sequences and the basal ganglia: kinematics, not habits.
    Desmurget M; Turner RS
    J Neurosci; 2010 Jun; 30(22):7685-90. PubMed ID: 20519543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study.
    Fogassi L; Gallese V; Buccino G; Craighero L; Fadiga L; Rizzolatti G
    Brain; 2001 Mar; 124(Pt 3):571-86. PubMed ID: 11222457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar control of constrained and unconstrained movements. I. Nuclear inactivation.
    Goodkin HP; Thach WT
    J Neurophysiol; 2003 Feb; 89(2):884-95. PubMed ID: 12574466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The globus pallidus pars interna in goal-oriented and routine behaviors: Resolving a long-standing paradox.
    Piron C; Kase D; Topalidou M; Goillandeau M; Orignac H; N'Guyen TH; Rougier N; Boraud T
    Mov Disord; 2016 Aug; 31(8):1146-54. PubMed ID: 26900137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control.
    Martin JH; Cooper SE; Hacking A; Ghez C
    J Neurophysiol; 2000 Apr; 83(4):1886-99. PubMed ID: 10758100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential role of GABAA and GABAB receptors in two distinct output stations of the rat striatum: studies on the substantia nigra pars reticulata and the globus pallidus.
    Ikeda H; Kotani A; Koshikawa N; Cools AR
    Neuroscience; 2010 Apr; 167(1):31-9. PubMed ID: 20132872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters.
    Mink JW; Thach WT
    J Neurophysiol; 1991 Feb; 65(2):301-29. PubMed ID: 2016643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of reversible blockade of basal ganglia on a voluntary arm movement.
    Kato M; Kimura M
    J Neurophysiol; 1992 Nov; 68(5):1516-34. PubMed ID: 1479428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential impairments in reaching and grasping produced by local inactivation within the forelimb representation of the motor cortex in the cat.
    Martin JH; Ghez C
    Exp Brain Res; 1993; 94(3):429-43. PubMed ID: 8359257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of primate magnocellular red nucleus neurons in controlling hand preshaping during reaching to grasp.
    van Kan PL; McCurdy ML
    J Neurophysiol; 2001 Apr; 85(4):1461-78. PubMed ID: 11287470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of globus pallidus on arm movements in monkeys. I. Effects of kainic acid-induced lesions.
    Horak FB; Anderson ME
    J Neurophysiol; 1984 Aug; 52(2):290-304. PubMed ID: 6481434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor cortical muscimol injection disrupts forelimb movement in freely moving monkeys.
    Kubota K
    Neuroreport; 1996 Oct; 7(14):2379-84. PubMed ID: 8951856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.
    Martin JH; Donarummo L; Hacking A
    J Neurophysiol; 2000 Feb; 83(2):895-906. PubMed ID: 10669503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement.
    Milak MS; Shimansky Y; Bracha V; Bloedel JR
    J Neurophysiol; 1997 Aug; 78(2):939-59. PubMed ID: 9307126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topography of dyskinesias and torticollis evoked by inhibition of substantia nigra pars reticulata.
    Dybdal D; Forcelli PA; Dubach M; Oppedisano M; Holmes A; Malkova L; Gale K
    Mov Disord; 2013 Apr; 28(4):460-8. PubMed ID: 23115112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.