BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10561396)

  • 1. Differential responses of respiratory nuclei to anoxia in rhythmic brain stem slices of mice.
    Telgkamp P; Ramirez JM
    J Neurophysiol; 1999 Nov; 82(5):2163-70. PubMed ID: 10561396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes in the hypoxic response of the hypoglossus respiratory motor output in vitro.
    Ramirez JM; Quellmalz UJ; Wilken B
    J Neurophysiol; 1997 Jul; 78(1):383-92. PubMed ID: 9242287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids.
    Funk GD; Smith JC; Feldman JL
    J Neurophysiol; 1993 Oct; 70(4):1497-515. PubMed ID: 8283211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice.
    Ramirez JM; Quellmalz UJ; Richter DW
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):799-812. PubMed ID: 8815212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hypoxic response of neurones within the in vitro mammalian respiratory network.
    Ramirez JM; Quellmalz UJ; Wilken B; Richter DW
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):571-82. PubMed ID: 9518714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro.
    Thoby-Brisson M; Ramirez JM
    J Neurosci; 2000 Aug; 20(15):5858-66. PubMed ID: 10908629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of the respiratory network of mice to hyperthermia.
    Tryba AK; Ramirez JM
    J Neurophysiol; 2003 Jun; 89(6):2975-83. PubMed ID: 12612007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleus raphé obscurus modulates hypoglossal output of neonatal rat in vitro transverse brain stem slices.
    Peever JH; Necakov A; Duffin J
    J Appl Physiol (1985); 2001 Jan; 90(1):269-79. PubMed ID: 11133919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen supply and ion homeostasis of the respiratory network in the in vitro perfused brainstem of adult rats.
    Morawietz G; Ballanyi K; Kuwana S; Richter DW
    Exp Brain Res; 1995; 106(2):265-74. PubMed ID: 8566191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prenatal nicotine exposure increases apnoea and reduces nicotinic potentiation of hypoglossal inspiratory output in mice.
    Robinson DM; Peebles KC; Kwok H; Adams BM; Clarke LL; Woollard GA; Funk GD
    J Physiol; 2002 Feb; 538(Pt 3):957-73. PubMed ID: 11826179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doxapram stimulates respiratory activity through distinct activation of neurons in the nucleus hypoglossus and the pre-Bötzinger complex.
    Kruszynski S; Stanaitis K; Brandes J; Poets CF; Koch H
    J Neurophysiol; 2019 Apr; 121(4):1102-1110. PubMed ID: 30699003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro.
    Rekling JC; Champagnat J; Denavit-Saubié M
    J Neurophysiol; 1996 Feb; 75(2):811-9. PubMed ID: 8714654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturational changes in the respiratory rhythm generator of the mouse.
    Paton JF; Richter DW
    Pflugers Arch; 1995 May; 430(1):115-24. PubMed ID: 7667071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro.
    Rekling JC; Champagnat J; Denavit-Saubié M
    J Neurophysiol; 1996 Feb; 75(2):795-810. PubMed ID: 8714653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminophylline modulation of the mouse respiratory network changes during postnatal maturation.
    Wilken B; Ramirez JM; Hanefeld F; Richter DW
    J Appl Physiol (1985); 2000 Nov; 89(5):2015-22. PubMed ID: 11053357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of respiratory rhythm by 5-HT in the brainstem-spinal cord preparation from newborn rat.
    Onimaru H; Shamoto A; Homma I
    Pflugers Arch; 1998 Mar; 435(4):485-94. PubMed ID: 9446695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compared effects of serotonin on the inspiratory activity of glossopharyngeal, vagal, hypoglossal and cervical motoneurons in neonatal rat brain stem-spinal cord preparations.
    Morin D
    Neurosci Lett; 1993 Sep; 160(1):61-4. PubMed ID: 8247335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat.
    Johnson SM; Smith JC; Funk GD; Feldman JL
    J Neurophysiol; 1994 Dec; 72(6):2598-608. PubMed ID: 7897477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of respiratory rhythm generation change profoundly during early life in mice and rats.
    Paton JF; Ramirez JM; Richter DW
    Neurosci Lett; 1994 Mar; 170(1):167-70. PubMed ID: 8041498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholine modulates respiratory pattern: effects mediated by M3-like receptors in preBötzinger complex inspiratory neurons.
    Shao XM; Feldman JL
    J Neurophysiol; 2000 Mar; 83(3):1243-52. PubMed ID: 10712452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.