BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 10561402)

  • 1. Motor dynamics encoding in cat cerebellar flocculus middle zone during optokinetic eye movements.
    Kitama T; Omata T; Mizukoshi A; Ueno T; Sato Y
    J Neurophysiol; 1999 Nov; 82(5):2235-48. PubMed ID: 10561402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor dynamics encoding in the rostral zone of the cat cerebellar flocculus during vertical optokinetic eye movements.
    Mizukoshi A; Kitama T; Omata T; Ueno T; Kawato M; Sato Y
    Exp Brain Res; 2000 May; 132(2):260-8. PubMed ID: 10853950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purkinje cell activity in the middle zone of the cerebellar flocculus during optokinetic and vestibular eye movement in cats.
    Omata T; Kitama T; Mizukoshi A; Ueno T; Kawato M; Sato Y
    Jpn J Physiol; 2000 Jun; 50(3):357-70. PubMed ID: 11016986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climbing fiber responses of Purkinje cells to retinal image movement in cat cerebellar flocculus.
    Fushiki H; Sato Y; Miura A; Kawasaki T
    J Neurophysiol; 1994 Apr; 71(4):1336-50. PubMed ID: 8035218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. I. Medical vestibular nucleus.
    Cheron G; Escudero M; Godaux E
    J Neurophysiol; 1996 Sep; 76(3):1759-74. PubMed ID: 8890290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. II. Prepositus hypoglossal nucleus.
    Escudero M; Cheron G; Godaux E
    J Neurophysiol; 1996 Sep; 76(3):1775-85. PubMed ID: 8890291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes.
    Gomi H; Shidara M; Takemura A; Inoue Y; Kawano K; Kawato M
    J Neurophysiol; 1998 Aug; 80(2):818-31. PubMed ID: 9705471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purkinje cell activity in the flocculus of vestibular neurectomized and normal monkeys during optokinetic nystagmus (OKN) and smooth pursuit eye movements.
    Waespe W; Rudinger D; Wolfensberger M
    Exp Brain Res; 1985; 60(2):243-62. PubMed ID: 4054269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-linear eye movements during visual-vestibular interaction under body oscillation with step-mode lateral linear acceleration.
    Mori S; Katayama N
    Exp Brain Res; 2005 Feb; 161(2):243-54. PubMed ID: 15502986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signalling properties of identified deep cerebellar nuclear neurons related to eye and head movements in the alert cat.
    Gruart A; Delgado-GarcĂ­a JM
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):37-54. PubMed ID: 7965834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optokinetic response of simple spikes of Purkinje cells in the cerebellar flocculus and nodulus of the pigmented rabbit.
    Kano M; Kano MS; Maekawa K
    Exp Brain Res; 1991; 87(3):484-96. PubMed ID: 1783019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Difference between horizontal and vertical optokinetic nystagmus in cats at upright position.
    Kitama T; Ishida M; Luan H; Kawasaki T; Sato Y
    Jpn J Physiol; 2001 Aug; 51(4):463-74. PubMed ID: 11564283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes.
    Kobayashi Y; Kawano K; Takemura A; Inoue Y; Kitama T; Gomi H; Kawato M
    J Neurophysiol; 1998 Aug; 80(2):832-48. PubMed ID: 9705472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation.
    Lisberger SG; Fuchs AF
    J Neurophysiol; 1978 May; 41(3):733-63. PubMed ID: 96225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Acceleration of Visually Evoked Smooth Eye Movements in Mice.
    Kodama T; du Lac S
    J Neurosci; 2016 Jun; 36(25):6836-49. PubMed ID: 27335412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site of interaction between saccade signals and vestibular signals induced by head rotation in the alert cat: functional properties and afferent organization of burster-driving neurons.
    Kitama T; Ohki Y; Shimazu H; Tanaka M; Yoshida K
    J Neurophysiol; 1995 Jul; 74(1):273-87. PubMed ID: 7472330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of superior vestibular nucleus flocculus target neurons in the squirrel monkey. I. General properties in comparison with flocculus projecting neurons.
    Zhang Y; Partsalis AM; Highstein SM
    J Neurophysiol; 1995 Jun; 73(6):2261-78. PubMed ID: 7666137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex spike responses of cerebellar Purkinje cells to constant velocity optokinetic stimuli in the cat flocculus.
    Sato Y; Miura A; Fushiki H; Kawasaki T; Watanabe Y
    Acta Otolaryngol Suppl; 1993; 504():13-6. PubMed ID: 8470518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations of visual climbing fiber response properties in cat cerebellar flocculus after cerebral cortical lesions.
    Sato Y; Fushiki H; Kawasaki T
    J Neurophysiol; 1995 Jan; 73(1):298-311. PubMed ID: 7714573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of units in the rat cerebellar flocculus during optokinetic and vestibular stimulation.
    Blanks RH; Precht W
    Exp Brain Res; 1983; 53(1):1-15. PubMed ID: 6609084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.