These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1141 related articles for article (PubMed ID: 10561408)
1. Compensation for interaction torques during single- and multijoint limb movement. Gribble PL; Ostry DJ J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408 [TBL] [Abstract][Full Text] [Related]
2. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control. Maeda RS; Cluff T; Gribble PL; Pruszynski JA J Neurophysiol; 2017 Oct; 118(4):1984-1997. PubMed ID: 28701534 [TBL] [Abstract][Full Text] [Related]
3. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Galloway JC; Koshland GF Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572 [TBL] [Abstract][Full Text] [Related]
4. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement. Debicki DB; Gribble PL J Neurophysiol; 2004 Aug; 92(2):754-65. PubMed ID: 15056688 [TBL] [Abstract][Full Text] [Related]
5. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. Osu R; Gomi H J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182 [TBL] [Abstract][Full Text] [Related]
6. Multijoint movement control in Parkinson's disease. Seidler RD; Alberts JL; Stelmach GE Exp Brain Res; 2001 Oct; 140(3):335-44. PubMed ID: 11681309 [TBL] [Abstract][Full Text] [Related]
8. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Topka H; Konczak J; Schneider K; Boose A; Dichgans J Exp Brain Res; 1998 Apr; 119(4):493-503. PubMed ID: 9588784 [TBL] [Abstract][Full Text] [Related]
9. Organizing principles for voluntary movement: extending single-joint rules. Almeida GL; Hong DA; Corcos D; Gottlieb GL J Neurophysiol; 1995 Oct; 74(4):1374-81. PubMed ID: 8989378 [TBL] [Abstract][Full Text] [Related]
10. Persistence of inter-joint coupling during single-joint elbow flexions after shoulder fixation. Debicki DB; Gribble PL Exp Brain Res; 2005 May; 163(2):252-7. PubMed ID: 15754174 [TBL] [Abstract][Full Text] [Related]
11. A novel shoulder-elbow mechanism for increasing speed in a multijoint arm movement. Debicki DB; Watts S; Gribble PL; Hore J Exp Brain Res; 2010 Jun; 203(3):601-13. PubMed ID: 20454785 [TBL] [Abstract][Full Text] [Related]
12. Characterization of torque-related activity in primary motor cortex during a multijoint postural task. Herter TM; Kurtzer I; Cabel DW; Haunts KA; Scott SH J Neurophysiol; 2007 Apr; 97(4):2887-99. PubMed ID: 17267758 [TBL] [Abstract][Full Text] [Related]
13. Sequential processes for controlling distance in multijoint movements. Schaefer SY; Sainburg RL J Mot Behav; 2008 Jul; 40(4):325-36. PubMed ID: 18628109 [TBL] [Abstract][Full Text] [Related]
14. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions. Koshland GF; Hasan Z Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829 [TBL] [Abstract][Full Text] [Related]
15. Interaction torque contributes to planar reaching at slow speed. Yamasaki H; Tagami Y; Fujisawa H; Hoshi F; Nagasaki H Biomed Eng Online; 2008 Oct; 7():27. PubMed ID: 18940016 [TBL] [Abstract][Full Text] [Related]
16. The effect of movement direction on joint torque covariation. Shemmell J; Hasan Z; Gottlieb GL; Corcos DM Exp Brain Res; 2007 Jan; 176(1):150-8. PubMed ID: 16850324 [TBL] [Abstract][Full Text] [Related]
17. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement. Cooper SE; Martin JH; Ghez C J Neurophysiol; 2000 Oct; 84(4):1988-2000. PubMed ID: 11024092 [TBL] [Abstract][Full Text] [Related]
18. Cortical and corticospinal output modulations during reaching movements with varying directions and magnitudes of interaction torques. Asmussen MJ; Bailey AZ; Nelson AJ Neuroscience; 2015 Dec; 311():268-83. PubMed ID: 26525892 [TBL] [Abstract][Full Text] [Related]
19. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players. Hirashima M; Kudo K; Watarai K; Ohtsuki T J Neurophysiol; 2007 Jan; 97(1):680-91. PubMed ID: 17079349 [TBL] [Abstract][Full Text] [Related]
20. Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks. Crevecoeur F; Kurtzer I; Scott SH J Neurophysiol; 2012 May; 107(10):2821-32. PubMed ID: 22357792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]