These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 10561441)

  • 1. Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures.
    Amzica F; Neckelmann D
    J Neurophysiol; 1999 Nov; 82(5):2731-46. PubMed ID: 10561441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex.
    Amzica F; Steriade M
    J Neurosci; 2000 Sep; 20(17):6648-65. PubMed ID: 10964970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo electrophysiological evidences for cortical neuron-glia interactions during slow (<1 Hz) and paroxysmal sleep oscillations.
    Amzica F
    J Physiol Paris; 2002; 96(3-4):209-19. PubMed ID: 12445898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns.
    Steriade M; Amzica F; Neckelmann D; Timofeev I
    J Neurophysiol; 1998 Sep; 80(3):1456-79. PubMed ID: 9744952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo.
    Amzica F; Massimini M; Manfridi A
    J Neurosci; 2002 Feb; 22(3):1042-53. PubMed ID: 11826133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity.
    Steriade M; Contreras D
    J Neurosci; 1995 Jan; 15(1 Pt 2):623-42. PubMed ID: 7823168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms.
    Neckelmann D; Amzica F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1480-94. PubMed ID: 9744953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular study of excitability in the seizure-prone neocortex in vivo.
    Steriade M; Amzica F
    J Neurophysiol; 1999 Dec; 82(6):3108-22. PubMed ID: 10601445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex.
    Amzica F; Massimini M
    Cereb Cortex; 2002 Oct; 12(10):1101-13. PubMed ID: 12217974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep oscillations developing into seizures in corticothalamic systems.
    Steriade M; Amzica F
    Epilepsia; 2003; 44 Suppl 12():9-20. PubMed ID: 14641557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in neuronal conductance during different components of cortically generated spike-wave seizures.
    Neckelmann D; Amzica F; Steriade M
    Neuroscience; 2000; 96(3):475-85. PubMed ID: 10717428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures.
    Lytton WW; Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic action on cortical glial cells in vivo.
    Seigneur J; Kroeger D; Nita DA; Amzica F
    Cereb Cortex; 2006 May; 16(5):655-68. PubMed ID: 16093563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components.
    Steriade M; Nuñez A; Amzica F
    J Neurosci; 1993 Aug; 13(8):3252-65. PubMed ID: 8340806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous and artificial activation of neocortical seizures.
    Amzica F; Steriade M
    J Neurophysiol; 1999 Dec; 82(6):3123-38. PubMed ID: 10601446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two types of intrinsic oscillations in neurons of the lateral and basolateral nuclei of the amygdala.
    Pape HC; Paré D; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):205-16. PubMed ID: 9425192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
    Steriade M
    Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.