These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10561471)

  • 1. Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides.
    Béven L; Helluin O; Molle G; Duclohier H; Wróblewski H
    Biochim Biophys Acta; 1999 Sep; 1421(1):53-63. PubMed ID: 10561471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane permeabilisation and antimycoplasmic activity of the 18-residue peptaibols, trichorzins PA.
    Béven L; Duval D; Rebuffat S; Riddell FG; Bodo B; Wróblewski H
    Biochim Biophys Acta; 1998 Jun; 1372(1):78-90. PubMed ID: 9651487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds.
    Molle G; Dugast JY; Spach G; Duclohier H
    Biophys J; 1996 Apr; 70(4):1669-75. PubMed ID: 8785325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of ion channels formed by zervamicins.
    Balaram P; Krishna K; Sukumar M; Mellor IR; Sansom MS
    Eur Biophys J; 1992; 21(2):117-28. PubMed ID: 1382967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues.
    Duclohier H; Molle G; Dugast JY; Spach G
    Biophys J; 1992 Sep; 63(3):868-73. PubMed ID: 1384742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues.
    Duclohier H; Wróblewski H
    J Membr Biol; 2001 Nov; 184(1):1-12. PubMed ID: 11687873
    [No Abstract]   [Full Text] [Related]  

  • 7. Control of leakage activities of alamethicin analogs by metals: side chain-dependent adverse gating response to Zn(2+).
    Noshiro D; Asami K; Futaki S
    Bioorg Med Chem; 2012 Dec; 20(23):6870-6. PubMed ID: 23088911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics.
    Haris PI; Molle G; Duclohier H
    Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.
    Cosette P; Rebuffat S; Bodo B; Molle G
    Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity.
    Duval D; Cosette P; Rebuffat S; Duclohier H; Bodo B; Molle G
    Biochim Biophys Acta; 1998 Mar; 1369(2):309-19. PubMed ID: 9518665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An anion-selective analogue of the channel-forming peptide alamethicin.
    Starostin AV; Butan R; Borisenko V; James DA; Wenschuh H; Sansom MS; Woolley GA
    Biochemistry; 1999 May; 38(19):6144-50. PubMed ID: 10320341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of proline position upon the ion channel activity of alamethicin.
    Kaduk C; Duclohier H; Dathe M; Wenschuh H; Beyermann M; Molle G; Bienert M
    Biophys J; 1997 May; 72(5):2151-9. PubMed ID: 9129817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations.
    Sansom MS; Tieleman DP; Berendsen HJ
    Novartis Found Symp; 1999; 225():128-41; discussion 141-5. PubMed ID: 10472052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alamethicin and related peptaibols--model ion channels.
    Sansom MS
    Eur Biophys J; 1993; 22(2):105-24. PubMed ID: 7689461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide models for membrane channels.
    Marsh D
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):345-61. PubMed ID: 8615800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the secondary structure on the pore forming properties of synthetic alamethicin analogs: NMR and molecular modelling studies.
    Brachais L; Mayer C; Davoust D; Molle G
    J Pept Sci; 1998 Aug; 4(5):344-54. PubMed ID: 9753394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channel properties of template assembled alamethicin tetramers.
    Duclohier H; Alder G; Kociolek K; Leplawy MT
    J Pept Sci; 2003; 9(11-12):776-83. PubMed ID: 14658797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal insertion of alamethicin in channel formation studied using its covalent dimer N-terminally linked by disulfide bond.
    Sakoh M; Okazaki T; Nagaoka Y; Asami K
    Biochim Biophys Acta; 2003 May; 1612(1):117-21. PubMed ID: 12729937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alamethicin pyromellitate: an ion-activated channel-forming peptide.
    Woolley GA; Epand RM; Kerr ID; Sansom MS; Wallace BA
    Biochemistry; 1994 Jun; 33(22):6850-8. PubMed ID: 7515685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of polycations on ion channels formed by neutral and negatively charged alamethicins.
    Rink T; Bartel H; Jung G; Bannwarth W; Boheim G
    Eur Biophys J; 1994; 23(3):155-65. PubMed ID: 7525266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.