BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10561471)

  • 1. Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides.
    Béven L; Helluin O; Molle G; Duclohier H; Wróblewski H
    Biochim Biophys Acta; 1999 Sep; 1421(1):53-63. PubMed ID: 10561471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane permeabilisation and antimycoplasmic activity of the 18-residue peptaibols, trichorzins PA.
    Béven L; Duval D; Rebuffat S; Riddell FG; Bodo B; Wróblewski H
    Biochim Biophys Acta; 1998 Jun; 1372(1):78-90. PubMed ID: 9651487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds.
    Molle G; Dugast JY; Spach G; Duclohier H
    Biophys J; 1996 Apr; 70(4):1669-75. PubMed ID: 8785325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of ion channels formed by zervamicins.
    Balaram P; Krishna K; Sukumar M; Mellor IR; Sansom MS
    Eur Biophys J; 1992; 21(2):117-28. PubMed ID: 1382967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues.
    Duclohier H; Molle G; Dugast JY; Spach G
    Biophys J; 1992 Sep; 63(3):868-73. PubMed ID: 1384742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues.
    Duclohier H; Wróblewski H
    J Membr Biol; 2001 Nov; 184(1):1-12. PubMed ID: 11687873
    [No Abstract]   [Full Text] [Related]  

  • 7. Control of leakage activities of alamethicin analogs by metals: side chain-dependent adverse gating response to Zn(2+).
    Noshiro D; Asami K; Futaki S
    Bioorg Med Chem; 2012 Dec; 20(23):6870-6. PubMed ID: 23088911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics.
    Haris PI; Molle G; Duclohier H
    Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.
    Cosette P; Rebuffat S; Bodo B; Molle G
    Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity.
    Duval D; Cosette P; Rebuffat S; Duclohier H; Bodo B; Molle G
    Biochim Biophys Acta; 1998 Mar; 1369(2):309-19. PubMed ID: 9518665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An anion-selective analogue of the channel-forming peptide alamethicin.
    Starostin AV; Butan R; Borisenko V; James DA; Wenschuh H; Sansom MS; Woolley GA
    Biochemistry; 1999 May; 38(19):6144-50. PubMed ID: 10320341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of proline position upon the ion channel activity of alamethicin.
    Kaduk C; Duclohier H; Dathe M; Wenschuh H; Beyermann M; Molle G; Bienert M
    Biophys J; 1997 May; 72(5):2151-9. PubMed ID: 9129817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations.
    Sansom MS; Tieleman DP; Berendsen HJ
    Novartis Found Symp; 1999; 225():128-41; discussion 141-5. PubMed ID: 10472052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alamethicin and related peptaibols--model ion channels.
    Sansom MS
    Eur Biophys J; 1993; 22(2):105-24. PubMed ID: 7689461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide models for membrane channels.
    Marsh D
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):345-61. PubMed ID: 8615800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the secondary structure on the pore forming properties of synthetic alamethicin analogs: NMR and molecular modelling studies.
    Brachais L; Mayer C; Davoust D; Molle G
    J Pept Sci; 1998 Aug; 4(5):344-54. PubMed ID: 9753394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channel properties of template assembled alamethicin tetramers.
    Duclohier H; Alder G; Kociolek K; Leplawy MT
    J Pept Sci; 2003; 9(11-12):776-83. PubMed ID: 14658797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal insertion of alamethicin in channel formation studied using its covalent dimer N-terminally linked by disulfide bond.
    Sakoh M; Okazaki T; Nagaoka Y; Asami K
    Biochim Biophys Acta; 2003 May; 1612(1):117-21. PubMed ID: 12729937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alamethicin pyromellitate: an ion-activated channel-forming peptide.
    Woolley GA; Epand RM; Kerr ID; Sansom MS; Wallace BA
    Biochemistry; 1994 Jun; 33(22):6850-8. PubMed ID: 7515685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of polycations on ion channels formed by neutral and negatively charged alamethicins.
    Rink T; Bartel H; Jung G; Bannwarth W; Boheim G
    Eur Biophys J; 1994; 23(3):155-65. PubMed ID: 7525266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.