These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 10561471)
21. Ferrocenoyl derivatives of alamethicin: redox-sensitive ion channels. Schmitt JD; Sansom MS; Kerr ID; Lunt GG; Eisenthal R Biochemistry; 1997 Feb; 36(5):1115-22. PubMed ID: 9033402 [TBL] [Abstract][Full Text] [Related]
22. Structure-function relationships in helix-bundle channels probed via total chemical synthesis of alamethicin dimers: effects of a Gln7 to Asn7 mutation. Jaikaran DC; Biggin PC; Wenschuh H; Sansom MS; Woolley GA Biochemistry; 1997 Nov; 36(45):13873-81. PubMed ID: 9374865 [TBL] [Abstract][Full Text] [Related]
23. The barrel-stave model as applied to alamethicin and its analogs reevaluated. Laver DR Biophys J; 1994 Feb; 66(2 Pt 1):355-9. PubMed ID: 7512830 [TBL] [Abstract][Full Text] [Related]
24. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties. Mak DO; Webb WW Biophys J; 1995 Dec; 69(6):2323-36. PubMed ID: 8599639 [TBL] [Abstract][Full Text] [Related]
25. Voltage-dependent pore activity of the peptide alamethicin correlated with incorporation in the membrane: salt and cholesterol effects. Stankowski S; Schwarz UD; Schwarz G Biochim Biophys Acta; 1988 Jun; 941(1):11-8. PubMed ID: 2453215 [TBL] [Abstract][Full Text] [Related]
26. Simulations of Membrane-Disrupting Peptides I: Alamethicin Pore Stability and Spontaneous Insertion. Perrin BS; Pastor RW Biophys J; 2016 Sep; 111(6):1248-1257. PubMed ID: 27653483 [TBL] [Abstract][Full Text] [Related]
27. Membrane permeabilization of a mammalian neuroendocrine cell type (PC12) by the channel-forming peptides zervamicin, alamethicin, and gramicidin. Weidema AF; Kropacheva TN; Raap J; Ypey DL Chem Biodivers; 2007 Jun; 4(6):1347-59. PubMed ID: 17589868 [TBL] [Abstract][Full Text] [Related]
28. Voltage-dependent and multi-state ionic channels induced by trichorzianines, anti-fungal peptides related to alamethicin. Molle G; Duclohier H; Spach G FEBS Lett; 1987 Nov; 224(1):208-12. PubMed ID: 2445603 [TBL] [Abstract][Full Text] [Related]
29. The antibacterial peptide ceratotoxin A displays alamethicin-like behavior in lipid bilayers. Saint N; Marri L; Marchini D; Molle G Peptides; 2003 Nov; 24(11):1779-84. PubMed ID: 15019210 [TBL] [Abstract][Full Text] [Related]
30. Voltage sensitivity and conformational change of isolated S4L45 fragments from sodium channels are tuned to proline. Helluin O; Bendahhou S; Duclohier H Eur Biophys J; 1998; 27(6):595-604. PubMed ID: 9791942 [TBL] [Abstract][Full Text] [Related]
31. Electrophysiology investigation of Trichogin GA IV activity in planar lipid membranes reveals ion channels of well-defined size. Iftemi S; De Zotti M; Formaggio F; Toniolo C; Stella L; Luchian T Chem Biodivers; 2014 Jul; 11(7):1069-77. PubMed ID: 25044592 [TBL] [Abstract][Full Text] [Related]
32. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling. Barranger-Mathys M; Cafiso DS Biochemistry; 1996 Jan; 35(2):498-505. PubMed ID: 8555220 [TBL] [Abstract][Full Text] [Related]
33. Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14. Kaduk C; Dathe M; Bienert M Biochim Biophys Acta; 1998 Aug; 1373(1):137-46. PubMed ID: 9733952 [TBL] [Abstract][Full Text] [Related]
34. Engineering charge selectivity in alamethicin channels. Woolley GA; Starostin AV; Butan R; James DA; Wenschuh H; Sansom MS Novartis Found Symp; 1999; 225():62-9; discussion 69-73. PubMed ID: 10472048 [TBL] [Abstract][Full Text] [Related]
35. Aggregation and porin-like channel activity of a beta sheet peptide. Thundimadathil J; Roeske RW; Jiang HY; Guo L Biochemistry; 2005 Aug; 44(30):10259-70. PubMed ID: 16042403 [TBL] [Abstract][Full Text] [Related]
37. Ion channels of N-terminally linked alamethicin dimers: enhancement of cation-selectivity by substitution of Glu for Gln at position 7. Okazaki T; Nagaoka Y; Asami K Bioelectrochemistry; 2007 May; 70(2):380-6. PubMed ID: 16814617 [TBL] [Abstract][Full Text] [Related]
38. Voltage-dependent interaction of the peptaibol antibiotic zervamicin II with phospholipid vesicles. Kropacheva TN; Raap J FEBS Lett; 1999 Nov; 460(3):500-4. PubMed ID: 10556525 [TBL] [Abstract][Full Text] [Related]
39. Antibacterial activity and pore-forming properties of ceratotoxins: a mechanism of action based on the barrel stave model. Bessin Y; Saint N; Marri L; Marchini D; Molle G Biochim Biophys Acta; 2004 Dec; 1667(2):148-56. PubMed ID: 15581850 [TBL] [Abstract][Full Text] [Related]
40. Alamethicin interaction with lipid membranes: a spectroscopic study on synthetic analogues. Stella L; Burattini M; Mazzuca C; Palleschi A; Venanzi M; Coin I; Peggion C; Toniolo C; Pispisa B Chem Biodivers; 2007 Jun; 4(6):1299-312. PubMed ID: 17589867 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]