BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 10561532)

  • 1. Tryptophan phosphorescence signals characteristic changes in protein dynamics at physiological temperatures.
    Tölgyesi F; Ullrich B; Fidy J
    Biochim Biophys Acta; 1999 Nov; 1435(1-2):1-6. PubMed ID: 10561532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the time-resolved absorption and phosphorescence from the tryptophan triplet state in proteins in solution.
    Gershenson A; Gafni A; Steel D
    Photochem Photobiol; 1998 Apr; 67(4):391-8. PubMed ID: 9559583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure/temperature effects on protein flexibilty from acrylamide quenching of protein phosphorescence.
    Cioni P; Strambini GB
    J Mol Biol; 1999 Aug; 291(4):955-64. PubMed ID: 10452899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycerol effects on protein flexibility: a tryptophan phosphorescence study.
    Gonnelli M; Strambini GB
    Biophys J; 1993 Jul; 65(1):131-7. PubMed ID: 8369422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penetration of analogues of H2O and CO2 in proteins studied by room temperature phosphorescence of tryptophan.
    Wright WW; Owen CS; Vanderkooi JM
    Biochemistry; 1992 Jul; 31(28):6538-44. PubMed ID: 1633165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude spectrum of structural fluctuations in proteins from the internal diffusion of solutes of increasing molecular size: a Trp phosphorescence quenching study.
    Strambini GB; Gonnelli M
    Biochemistry; 2011 Feb; 50(6):970-80. PubMed ID: 21218776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and pressure dependence of azurin stability as monitored by tryptophan fluorescence and phosphorescence. The case of F29A mutant.
    Tognotti D; Gabellieri E; Morelli E; Cioni P
    Biophys Chem; 2013 Dec; 182():44-50. PubMed ID: 23816248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long time-scale probing of the protein globular core using hydrogen-exchange and room temperature phosphorescence.
    Schlyer BD; Steel DG; Gafni A
    Biochem Biophys Res Commun; 1996 Jun; 223(3):670-4. PubMed ID: 8687454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quenching of tryptophan phosphorescence in Escherichia coli alkaline phosphatase by long-range transfer mechanisms to external agents in the rapid-diffusion limit.
    Mersol JV; Steel DG; Gafni A
    Biochemistry; 1991 Jan; 30(3):668-75. PubMed ID: 1846302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure effects on protein flexibility monomeric proteins.
    Cioni P; Strambini GB
    J Mol Biol; 1994 Sep; 242(3):291-301. PubMed ID: 8089848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorescence measurements of calf gamma-II, III, and IV crystallins at 77 and 293 K.
    Berger JW; Vanderkooi JM; Tallmadge DH; Borkman RF
    Exp Eye Res; 1989 May; 48(5):627-39. PubMed ID: 2737261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorescence of alkaline phosphatase of E. coli in vitro and in situ.
    Horie T; Vanderkooi JM
    Biochim Biophys Acta; 1981 Sep; 670(2):294-7. PubMed ID: 7028128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No effect of covalently linked poly(ethylene glycol) chains on protein internal dynamics.
    Gonnelli M; Strambini GB
    Biochim Biophys Acta; 2009 Mar; 1794(3):569-76. PubMed ID: 19150514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of proteins encapsulated in silica hydrogels by Trp phosphorescence.
    Gonnelli M; Strambini GB
    Biophys Chem; 2003 May; 104(1):155-69. PubMed ID: 12834835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Local Electrostatics on the Redox Properties of Tryptophan Radicals in Azurin: Implications for Redox-Active Tryptophans in Proton-Coupled Electron Transfer.
    Tyson KJ; Davis AN; Norris JL; Bartolotti LJ; Hvastkovs EG; Offenbacher AR
    J Phys Chem Lett; 2020 Apr; 11(7):2408-2413. PubMed ID: 32134666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence.
    Hansen JE; Steel DG; Gafni A
    Biophys J; 1996 Oct; 71(4):2138-43. PubMed ID: 8889189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature and pressure effects on C112S azurin: volume, expansivity, and flexibility changes.
    Cioni P; Gabellieri E; Marchal S; Lange R
    Proteins; 2014 Sep; 82(9):1787-98. PubMed ID: 24652750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.