BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 10561566)

  • 1. Kinetic mechanism of ATP synthesis catalyzed by mitochondrial Fo x F1-ATPase.
    Galkin MA; Syroeshkin AV
    Biochemistry (Mosc); 1999 Oct; 64(10):1176-85. PubMed ID: 10561566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic study on the hydrolytic activity of mitochondrial ATPase (F0-F1 complex) from pig heart.
    Ye JJ; Lin ZH
    Biochem Int; 1986 May; 12(5):669-76. PubMed ID: 2873816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological and functional relationship of subunits F1-gamma and F0I-PVP(b) in the mitochondrial H+-ATP synthase.
    Gaballo A; Zanotti F; Solimeo A; Papa S
    Biochemistry; 1998 Dec; 37(50):17519-26. PubMed ID: 9860867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of ox heart mitochondrial F1-ATPase with immobilized ADP and ATP.
    Beharry S; Gresser MJ; Bragg PD
    Biochem J; 1990 Mar; 266(3):835-41. PubMed ID: 2139326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites.
    Ye JJ; Du J; Lin ZH
    Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dimethylsulfoxide on ATP synthesis by mitochondrial soluble F1-ATPase.
    Sakamoto J
    J Biochem; 1984 Aug; 96(2):483-7. PubMed ID: 6238952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Kinetic evidence of the interaction of three nucleotide-binding centers of mitochondrial ATP-synthetase].
    Bulygin VV; Vinogradov AD
    Biokhimiia; 1989 Aug; 54(8):1359-67. PubMed ID: 2510833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase.
    Baizabal-Aguirre VM; Behrens MI; Gómez-Puyou A; Tuena de Gómez-Puyou M
    Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-linked binding of Pi is required for continuous steady-state proton-translocating ATP hydrolysis catalyzed by F0.F1 ATP synthase.
    Zharova TV; Vinogradov AD
    Biochemistry; 2006 Dec; 45(48):14552-8. PubMed ID: 17128994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition.
    Bulygin VV; Vinogradov AD
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):149-56. PubMed ID: 1828147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase.
    Sakamoto J
    J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure effects on the interaction between natural inhibitor protein and mitochondrial F1-ATPase.
    Fornells LA; Guimarães-Motta H; Nehme JS; Martins OB; Silva JL
    Arch Biochem Biophys; 1998 Jan; 349(2):304-12. PubMed ID: 9448719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?].
    Bronnikov GE; Vinogradova SO; Mezentseva VS; Samoĭlova EV
    Biofizika; 1999; 44(3):465-73. PubMed ID: 10439862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenine nucleotides regulate the functional transition in mitochondrial H+-ATPase and the kinetic behaviour of its ATP-synthetase form.
    Bronnikov GE; Samoylova EV
    Biochem Int; 1987 May; 14(5):859-69. PubMed ID: 2900638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity.
    Syroeshkin AV; Vasilyeva EA; Vinogradov AD
    FEBS Lett; 1995 Jun; 366(1):29-32. PubMed ID: 7789510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of Mg2+.
    Gómez-Puyou A; Ayala G; Muller U; Tuena de Gómez-Puyou M
    J Biol Chem; 1983 Nov; 258(22):13673-9. PubMed ID: 6227614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic modeling of ATP synthesis by ATP synthase and its mechanistic implications.
    Nath S; Jain S
    Biochem Biophys Res Commun; 2000 Jun; 272(3):629-33. PubMed ID: 10860805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties of mitochondrial H+-adenosine triphosphatase in Morris hepatoma 3924A.
    Capuano F; Stefanelli R; Carrieri E; Papa S
    Cancer Res; 1989 Dec; 49(23):6547-50. PubMed ID: 2531032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles.
    Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD
    Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.