These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10561808)

  • 1. Renal arteriolar contractile responses to angiotensin II in rats with poorly controlled diabetes mellitus.
    Carmines PK; Ohishi K
    Clin Exp Pharmacol Physiol; 1999 Nov; 26(11):877-82. PubMed ID: 10561808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
    Schoonmaker GC; Fallet RW; Carmines PK
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F302-9. PubMed ID: 10662734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus.
    Carmines PK; Ohishi K; Ikenaga H
    J Clin Invest; 1996 Dec; 98(11):2564-71. PubMed ID: 8958219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exaggerated impact of ATP-sensitive K(+) channels on afferent arteriolar diameter in diabetes mellitus.
    Ikenaga H; Bast JP; Fallet RW; Carmines PK
    J Am Soc Nephrol; 2000 Jul; 11(7):1199-1207. PubMed ID: 10864575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal arteriolar angiotensin responses during varied adenosine receptor activation.
    Carmines PK; Inscho EW
    Hypertension; 1994 Jan; 23(1 Suppl):I114-9. PubMed ID: 8282342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Ca(2+)-activated K(+) channels on rat renal arteriolar responses to depolarizing agonists.
    Fallet RW; Bast JP; Fujiwara K; Ishii N; Sansom SC; Carmines PK
    Am J Physiol Renal Physiol; 2001 Apr; 280(4):F583-91. PubMed ID: 11249849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium channel contributions to afferent arteriolar tone in normal and diabetic rat kidney.
    Troncoso Brindeiro CM; Fallet RW; Lane PH; Carmines PK
    Am J Physiol Renal Physiol; 2008 Jul; 295(1):F171-8. PubMed ID: 18495797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide dismutase restores the influence of nitric oxide on renal arterioles in diabetes mellitus.
    Ohishi K; Carmines PK
    J Am Soc Nephrol; 1995 Feb; 5(8):1559-66. PubMed ID: 7756588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segment-specific effect of chloride channel blockade on rat renal arteriolar contractile responses to angiotensin II.
    Carmines PK
    Am J Hypertens; 1995 Jan; 8(1):90-4. PubMed ID: 7734105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney.
    Troncoso Brindeiro CM; Lane PH; Carmines PK
    Hypertension; 2012 Mar; 59(3):657-64. PubMed ID: 22252401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of cyclo-oxygenase blockade on juxtamedullary microvascular responses to angiotensin II in rat kidney.
    Harrison-Bernard LM; Carmines PK
    Clin Exp Pharmacol Physiol; 1995 Oct; 22(10):732-8. PubMed ID: 8575109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment of afferent arteriolar myogenic responsiveness in the galactose-fed rat is prevented by tolrestat.
    Forster HG; ter Wee PM; Hohman TC; Epstein M
    Diabetologia; 1996 Aug; 39(8):907-14. PubMed ID: 8858212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Navar LG
    Hypertension; 1999 Jan; 33(1 Pt 2):462-6. PubMed ID: 9931148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine kinase involvement in renal arteriolar constrictor responses to angiotensin II.
    Carmines PK; Fallet RW; Che Q; Fujiwara K
    Hypertension; 2001 Feb; 37(2 Pt 2):569-73. PubMed ID: 11230336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive nitric oxide-angiotensin II influences on renal microcirculation in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Inscho EW; Navar LG
    Hypertension; 1998 Jun; 31(6):1255-60. PubMed ID: 9622138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores.
    Inscho EW; Imig JD; Cook AK
    Hypertension; 1997 Jan; 29(1 Pt 2):222-7. PubMed ID: 9039106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Juxtamedullary microvascular dysfunction during the hyperfiltration stage of diabetes mellitus.
    Ohishi K; Okwueze MI; Vari RC; Carmines PK
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F99-105. PubMed ID: 8048571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P2X1 receptor-mediated vasoconstriction of afferent arterioles in angiotensin II-infused hypertensive rats fed a high-salt diet.
    Inscho EW; Cook AK; Clarke A; Zhang S; Guan Z
    Hypertension; 2011 Apr; 57(4):780-7. PubMed ID: 21321307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candesartan cilexetil protects against loss of autoregulatory efficiency in angiotensin II-infused rats.
    Inscho EW; Imig JD; Deichmann PC; Cook AK
    J Am Soc Nephrol; 1999 Jan; 10 Suppl 11():S178-83. PubMed ID: 9892160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium mobilization contributes to pressure-mediated afferent arteriolar vasoconstriction.
    Inscho EW; Cook AK; Mui V; Imig JD
    Hypertension; 1998 Jan; 31(1 Pt 2):421-8. PubMed ID: 9453339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.