These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 10562242)

  • 1. Anatomy of two mechanisms of breaking physical dormancy by experimental treatments in seeds of two North American Rhus species (Anacardiaceae).
    Li X; Baskin JM; Baskin CC
    Am J Bot; 1999 Nov; 86(11):1505-11. PubMed ID: 10562242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative morphology and physiology of fruit and seed development in the two shrubs Rhus aromatica and R. glabra (Anacardiaceae).
    Li X; Baskin JM; Baskin CC
    Am J Bot; 1999 Sep; 86(9):1217-25. PubMed ID: 10487809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seed anatomy and water uptake in relation to seed dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae).
    Orozco-Segovia A; Márquez-Guzmán J; Sánchez-Coronado ME; Gamboa de Buen A; Baskin JM; Baskin CC
    Ann Bot; 2007 Apr; 99(4):581-92. PubMed ID: 17298989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp.
    Baskin CC; Zackrisson O; Baskin JM
    Am J Bot; 2002 Mar; 89(3):486-93. PubMed ID: 21665646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphophysiological dormancy in seeds of two North American and one Eurasian species of Sambucus (Caprifoliaceae) with underdeveloped spatulate embryos.
    Hidayati SN; Baskin JM; Baskin CC
    Am J Bot; 2000 Nov; 87(11):1669-78. PubMed ID: 11080118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical dormancy in seeds of the holoparasitic angiosperm Cuscuta australis (Convolvulaceae, Cuscuteae): dormancy-breaking requirements, anatomy of the water gap and sensitivity cycling.
    Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC; Chien CT
    Ann Bot; 2008 Jul; 102(1):39-48. PubMed ID: 18453546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dormancy-breaking and germination requirements for seeds of Symphoricarpos orbiculatus (Caprifoliaceae).
    Hidayati SN; Baskin JM; Baskin CC
    Am J Bot; 2001 Aug; 88(8):1444-51. PubMed ID: 21669677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein changes between dormant and dormancy-broken seeds of Prunus campanulata Maxim.
    Lee CS; Chien CT; Lin CH; Chiu YY; Yang YS
    Proteomics; 2006 Jul; 6(14):4147-54. PubMed ID: 16800032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae).
    Delgado-Sánchez P; Ortega-Amaro MA; Jiménez-Bremont JF; Flores J
    Plant Biol (Stuttg); 2011 Jan; 13(1):154-9. PubMed ID: 21143736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and anatomy of physical dormancy in Ipomoea lacunosa: identification of the water gap in seeds of Convolvulaceae (Solanales).
    Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC
    Ann Bot; 2007 Jul; 100(1):13-22. PubMed ID: 17513869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eyeing emergence: modified treatments for terminating dormancy of conifer seeds.
    Feurtado JA; Kermode AR
    Methods Mol Biol; 2011; 773():53-64. PubMed ID: 21898249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on pecan seed germination influenced by seed endocarp.
    Liu J; Xue T; Ren L; Cui M; Jiang T; Yang X
    Open Life Sci; 2022; 17(1):851-855. PubMed ID: 36045711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed development in Ipomoea lacunosa (Convolvulaceae), with particular reference to anatomy of the water gap.
    Gehan Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC
    Ann Bot; 2007 Sep; 100(3):459-70. PubMed ID: 17650511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and development of Medicago truncatula pod wall and seed coat.
    Wang HL; Grusak MA
    Ann Bot; 2005 Apr; 95(5):737-47. PubMed ID: 15703184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Storage behavior and changes in concentrations of abscisic acid and gibberellins during dormancy break and germination in seeds of Phellodendron amurense var. wilsonii (Rutaceae).
    Chen SY; Chien CT; Baskin JM; Baskin CC
    Tree Physiol; 2010 Feb; 30(2):275-84. PubMed ID: 20008838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges facing the forest industry in relation to seed dormancy and seed quality.
    Stoehr MU; El-Kassaby YA
    Methods Mol Biol; 2011; 773():3-15. PubMed ID: 21898246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standardizing seed dormancy research.
    Hilhorst HW
    Methods Mol Biol; 2011; 773():43-52. PubMed ID: 21898248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seed germination ecophysiology of the Asian species Osmorhiza aristata (Apiaceae): comparison with its North American congeners and implications for evolution of types of dormancy.
    Walck JL; Hidayati SN; Okagami N
    Am J Bot; 2002 May; 89(5):829-35. PubMed ID: 21665683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: influence of abscisic and gibberellic acids.
    Pawłowski TA
    Proteomics; 2007 Jun; 7(13):2246-57. PubMed ID: 17533642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dormancy and germination responses of halophyte seeds to the application of ethylene.
    Khan MA; Ansari R; Gul B; Li W
    C R Biol; 2009 Sep; 332(9):806-15. PubMed ID: 19748455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.