These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10562525)

  • 1. Aquatic vertebrate locomotion: wakes from body waves.
    Videler JJ; Müller UK; Stamhuis EJ
    J Exp Biol; 1999 Dec; 202(Pt 23):3423-30. PubMed ID: 10562525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel (Anguilla anguilla).
    Müller UK; Smit J; Stamhuis EJ; Videler JJ
    J Exp Biol; 2001 Aug; 204(Pt 16):2751-62. PubMed ID: 11683431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Riding the waves: the role of the body wave in undulatory fish swimming.
    Müller UK; Stamhuis EJ; Videler JJ
    Integr Comp Biol; 2002 Nov; 42(5):981-7. PubMed ID: 21680379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of the vortex wakes of flying and swimming vertebrates.
    Rayner JM
    Symp Soc Exp Biol; 1995; 49():131-55. PubMed ID: 8571221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso).
    MÜLler U; Heuvel B; Stamhuis E; Videler J
    J Exp Biol; 1997; 200(Pt 22):2893-906. PubMed ID: 9344979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering.
    Wilga CD; Lauder GV
    J Exp Biol; 2002 Aug; 205(Pt 16):2365-74. PubMed ID: 12124362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming.
    Tytell ED
    J Exp Biol; 2006 Apr; 209(Pt 8):1516-34. PubMed ID: 16574809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of flow speed and body size on Kármán gait kinematics in rainbow trout.
    Akanyeti O; Liao JC
    J Exp Biol; 2013 Sep; 216(Pt 18):3442-9. PubMed ID: 23737556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    J Exp Biol; 2003 Mar; 206(Pt 6):1059-73. PubMed ID: 12582148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of the Tail or Lack Thereof in the Evolution of Tetrapod Aquatic Propulsion.
    Fish FE; Rybczynski N; Lauder GV; Duff CM
    Integr Comp Biol; 2021 Sep; 61(2):398-413. PubMed ID: 33881525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata.
    Wilga CD; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 15):2261-78. PubMed ID: 10887066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamics of unsteady fish swimming and the effects of body size: comparing the flow fields of fish larvae and adults.
    Müller UK; Stamhuis EJ; Videler JJ
    J Exp Biol; 2000 Jan; 203(Pt 2):193-206. PubMed ID: 10607529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Sep; 204(Pt 17):2943-58. PubMed ID: 11551984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
    Liao JC
    J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers.
    Drucker EG; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 16):2379-93. PubMed ID: 10903153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vortex wake of the free-swimming larva and pupa of Culex pipiens (Diptera).
    Brackenbury J
    J Exp Biol; 2001 Jun; 204(Pt 11):1855-67. PubMed ID: 11441028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.